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Stochastic resonance of ensemble neurons for transient spike trains: Wavelet analysis

Hideo Hasegawa*
Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan

~Received 28 November 2001; published 7 August 2002!

By using the wavelet transformation~WT!, I have analyzed the response of an ensemble ofN (51, 10, 100,
and 500! Hodgkin-Huxley neurons totransient M-pulse spike trains (M51 to 3! with independent Gaussian
noises. The cross correlation between the input and output signals is expressed in terms of the WT expansion
coefficients. The signal-to-noise ratio~SNR! is evaluated by using thedenoisingmethod within the WT, by
which the noise contribution is extracted from the output signals. Although the response of a single (N51)
neuron to subthreshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the
cross correlation and SNR is shown to be much improved by increasing the value ofN: a population of neurons
plays an indispensable role in the stochastic resonance~SR! for transient spike inputs. It is also shown that in
a large-scale ensemble, the transmission fidelity for suprathreshold transient spikes is not significantly de-
graded by a weak noise which is responsible to SR for subthreshold inputs.

DOI: 10.1103/PhysRevE.66.021902 PACS number~s!: 87.10.1e, 84.35.1i, 05.45.2a, 07.05.Mh
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I. INTRODUCTION

During the last half century, extensive experimental a
theoretical studies have been performed on the function
brain. However, it remains controversial how neurons co
municate information by action potentials or spikes@1–6#.
One issue is whether information is encoded in the aver
firing rate of neurons~rate code! or in the precise firing times
~temporal code!. Since Adrian@7# first noted the relationship
between neural firing rate and stimulus intensity, the ra
code model has been supported in many experiments of
tor and sensory neurons. In the last few years, however,
perimental evidences have been accumulated, indicatin
use of the temporal code in neural systems; sonar proces
of bats@8#, sound localization of owls@9#, electrosensation in
electric fish@10#, visual processing of cats@11,12#, monkeys
@13#, and humans@14#.

Although many debates on the nature of the neural c
have been focused on the rate versus temporal codes, th
another important issue to consider: information is enco
in the activity of single~or very few! neurons or that of a
large number of neurons~populationor ensemble code!. The
population rate-code model assumes that information
coded in the relative firing rates of ensemble neurons,
has been adopted in most of the theoretical analyses. On
contrary, in the population temporal-code model, it is
sumed that relative timings between spikes in ensemble
rons may be used as an encoding mechanism for percept
processing@15–17#. A number of experimental data suppor
ing this code have been reported in recent years@12,18–20#.
For example, data have demonstrated that temporally c
dinated spikes can systematically signal sensory object
ture, even in the absence of changes in firing rate of
spikes@18#.

The strong criticism against the temporal code is t
spikes are vulnerable to noise while the rate code is rob
against noise. It is well known that although firings of sing
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neocortical neuronsin vitro are precise and reliable, thosein
vivo are quite unreliable@21# due to its noisy environment
which makes the reliability of neurons firings worse. In r
cent years, however, many studies have been performed
the stochastic resonance~SR! @22,23# in which information
transmission of signals is enhanced by background noi
This paradoxical SR phenomenon was first discovered in
context of climate dynamics, and it is now reported in ma
nonlinear systems such as electric circuits, ring lasers, se
conductor devices, and neurons.

For single neurons, SR has been studied by using var
theoretical models such as the integrate-and-fire~IF! model
@24–26#, the FitzHough-Nagumo~FN! model @27–29#, and
the Hodgkin-Huxley~HH! model @30#. In these studies, a
weak periodic~sinusoidal! signal is applied to the neuron
and it has been reported that the peak height of
interspike-interval~ISI! distribution@24–27# or the signal-to-
noise ratio~SNR! of output signals@28–30# shows the maxi-
mum when the noise intensity is changed.

SR in coupled or ensemble neurons has been also in
tigated by using the IF model@31,32#, FN model@33–35#,
and HH model@36–39#. The transmission fidelity is exam
ined by calculating various quantities: the peak-to-width
tio of output signals@31,36,37#, the cross correlation betwee
input and output signals@31,33,39#, SNR@31,34,39#, and the
mutual information@35#. One or some of these quantities h
been shown to take a maximum as functions of the no
intensity and the coupling strength. Collins, Chow, and I
hoff @33# have pointed out that SR of ensemble neurons
improved as the size of an ensemble is increased. S
physiological experiments support SR in real, biological s
tems of crayfish@40,41#, cricket @42# and rat@43,44#.

SR studies mentioned above are motivated from the
that peripheral sensory neurons play the role of transduc
receiving analog stimuli and emitting spikes. In central ne
ral systems, however, cortical neurons play the role of d
processors, receiving and transmitting spike trains. The p
sibility of SR in the spike transmission has been repor
@45–47#. The response to periodic coherent spike-train inp
has been shown to be enhanced by an addition of spike-
©2002 The American Physical Society02-1
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noises characterized by Poisson@45,47# or gamma distribu-
tion @46#.

It should be stressed that these theoretical studies on
in neural systems have been performed mostly for station
analog~or spike-train! signals although they are periodic o
aperiodic@33,48#. There have been few theoretical studies
SR for nonstationary signals. Fakir@49# has discussed SR fo
nonstationary analog inputs with finite duration by calcul
ing the cross correlation. By applying a single impulse, P
Wilkinson, and Moss@36# have demonstrated that the spik
timing precision is improved by noises in an ensemble
1000 HH neurons. One of the reasons why SR study
stationary signals is dominant, is mainly due to the fact t
the stationary signals can be easily analyzed by the Fou
transformation~FT! with which, for example, the SNR is
evaluated from FT spectra of output signals. The FT requ
that a signal to be examined is stationary, not giving the ti
evolution of the frequency pattern. Actual biological signa
are, however, not necessarily stationary. It has been repo
that spike signals in cortical neurons are generally not
tionary, rather they are transient signals or bursts@50#,
whereas periodic spikes are found in systems such as a
tory system of owl@51# and the electrosensory system
electric fish@52#.

The limitation of the FT analysis can be partly resolv
by using the short-time Fourier transformation~STFT!. As-
suming that the signal is quasistationary in the narrow ti
period, the FT is applied with time-evolving narrow win
dows. Then STFT yields the time evolution of the frequen
spectrum. While the STFT compromise between time a
frequency information can be useful, the drawback is t
once we choose a particular size of the time window, t
window is the same for all frequencies. Many signals requ
a more flexible approach in which we can vary the wind
size to determine more accurately either time or frequen

The drawback of the STFT is overcome in the wave
transformation~WT! @53,54# with a variable-sized window-
ing. In contrast to the FT, the WT offers a two-dimension
expansion for a time-dependent signal with the scale
translation parameters which are interpreted physically as
inverse of frequency and time, respectively. The WT allo
the use of long time intervals where we want more prec
low-frequency information, and shorter regions where
want high-frequency information. As a basis of the WT, w
employ themother waveletwhich is localized in both fre-
quency and time domains. The WT expansion is carried
in terms of a family of wavelets which is made by dilatio
and translation of the mother wavelet. The time evolution
frequency pattern can be followed with an optimal tim
frequency resolution.

The WT appears to be an ideal tool for analyzing sign
of a nonstationary nature. In recent years the WT has b
applied to an analysis of biological signals@55#, such as elec-
toencephalographic~EEG! waves@56–62#, and spikes@63–
67#. EEG is a reflection of the activity of ensembles of ne
rons producing oscillations. By using the WT, we can obt
the time-dependent decomposition of EEG signals tod ~0.3–
3.5 Hz!, u ~3.5–7.5 Hz!, a ~7.5–12.5 Hz!, b ~12.5–30.0 Hz!
andg ~30–70 Hz! components@56–62#. It has been shown
02190
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that the WT is a powerful tool for spike sorting in whic
coherent signals of a single target neuron are extracted f
mixture of response signals@63–65#. Quite recently, Hase-
gawa@67# has made an analysis of transient spike-train s
nals of a HH neuron with the use of WT, calculating th
energy distribution and Shanon entropy.

It is interesting to analyze the response of ensemble n
rons totransientspike inputs in a noisy environment by u
ing the WT. There are several sources of noises:~i! cells in
sensory neurons are exposed to noises arising from the o
world, ~ii ! ion channels of the membrane of neurons a
known to be stochastic@68#, ~iii ! the synaptic transmission
yields noises originating from random fluctuations of t
synaptic vesicle release rate@69#, and ~iv! synaptic inputs
include leaked currents from neighboring neurons@70#. Most
of the existing studies on SR adopt the Gaussian noises,
ing into account the items~i!–~iii !. Simulating the noise of
the item~iv!, Refs.@45–47# include spike-train noises char
acterized by a Poisson or gamma distribution. In this stu
we take into account Gaussian noises; SR for spike-train
puts with added spike-train noises will be discussed in
separate paper@71#.

We assume an ensemble of HH neurons, which rece
transient spike trains consisting ofM pulses with added, in-
dependent Gaussian noises. The HH neuron model was o
nally proposed to account for the properties of squid gi
axon@72#, and it has been generalized with modifications
ion conductances. The HH-type models have been wid
adopted for a study of neuronal activity. Neuron models su
as the Morris-Lecar@73#, FN, and IF models were propose
as the simplified, reduced versions of the HH model. A
though these simplified models are more amenable than
HH model, the variables in the models do not have dir
empirical basis in real neurons. In this sense, the HH mo
is known to be the most realistic among theoretical neu
models. The signal transmission is assessed by the cross
relation between input and output signals and SNR, wh
are expressed in terms of WT expansion coefficients. In
culating the SNR, we adopt the denoising technique wit
the WT method@74–77#, by which the noise contribution is
extracted from output signals. The WT denoising method
expected be better than other methods such as Wiener fi
ing, which is best applied to stationary signals with nois
@78#.

Our paper is organized as follows. In Sec. II A, a
adopted model for an ensemble ofN-unit HH neurons is
described, and in Sec. II B the WT is briefly discussed.
present the calculated results forM51 pulse train in Sec.
III A, and the results for spike trains withM52 and 3 are
discussed in Sec. III B. Section IV is devoted to conclus
and discussion.

II. CALCULATION METHODS

A. Ensemble neuron model

We assume a network consisting ofN-unit HH neurons
which receive the same spike trains but independent Ga
ian white noises through excitatory synapses. Spikes em
by the ensemble neurons are collected by a summing neu
2-2
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STOCHASTIC RESONANCE OF ENSEMBLE NEURONS . . . PHYSICAL REVIEW E 66, 021902 ~2002!
A similar model was previously adopted by several auth
studying SR for analog signals@33,36,37#. An input signal in
this paper is a transient spike train consisting ofM impulses
(M51 to 3!. Dynamics of the membrane potentialVi(t) of
the HH neuroni is described by the nonlinear differenti
equations given by

C̄dVi~ t !/dt52I i
ion~ t !1I i

ps~ t !1I i
n~ t ! ~ for 1< i<N!,

~1!

whereC̄51mF/cm2 is the capacitance of the membrane. T
first term I i

ion(t) of Eq. ~1! denotes the ion current given b

I i
ion~ t !5gNami

3hi~Vi2VNa!1gKni
4~Vi2VK!1gL~Vi2VL!,

~2!

where the maximum values of conductivities of Na and
channels and leakage aregNa5120 mS/cm2, gK
536 mS/cm2, and gL50.3 mS/cm2, respectively; the re-
spective reversal potentials areVNa550 mV, VK5
277 mV, and VL5254.5 mV. Dynamics of the gating
variables of Na and K channels,mi , hi , and ni , are de-
scribed by ordinary differential equations, whose details h
been given elsewhere@72,79#.

The second termI i
ps(t) in Eq. ~1! denotes the postsynapt

current given by

I i
ps~ t !5 (

m51

M

gs~Va2Vs!a~ t2t im!, ~3!

with the alpha functiona(t),

a~ t !5~ t/ts!e
2t/tsQ~ t !, ~4!

where the Heaviside function is defined byQ(t)51 for x
>0 and 0 forx,0, t im is themth firing time of the input,
and gs , Vs , andts stand for the conductance, reversal p
tential, and time constant, respectively, of the synapse.
postsynaptic current given by Eq.~3! is induced by an input
spike train with the magnitudeVa given by

Ui~ t !5Va (
m51

M

D~ t2t im!, ~5!

whereD(t)51 for t50 and 0 otherwise.
The third termI i

n(t) in Eq. ~1! denotes the Gaussian nois
given by

^j j~ t !&50, ~6!

^j j~ t !jk~ t8!&52Dd jkd~ t2t8!, ~7!

where the bracket̂X& denotes the average andD the inten-
sity of white noises.

The output spike of the neuroni in an ensemble is given
by

Uoi~ t !5Va(
n

D~ t2toin! ~8!
02190
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in a similar form as an input spike@Eq. ~5!#, wheretoin is the
nth firing time whenVi(t) crossesVz50 mV from below.

We should remark that our model given by Eqs.~1!–~7!
does not include couplings among ensemble neurons. Th
in contrast with some works on ensemble neuro
@34,35,38,39# where introduced couplings among neuro
play an important role in SR besides noises, related disc
sion being given in Sec. IV.

In order to solve stochastic differential equations given
Eqs. ~1!–~7!, we have adopted the forth-order Runge-Ku
algorithm, which has been widely employed in SR studi
although there are some criticisms that the algorithm is
useful for noisy integration. Our simulations have been p
formed by the integration time step of 0.01 ms with doub
precision: some results have been examined by using sm
time steps and also the exponential algorithm. The ini
conditions for the variables are given byVi(t)5
265 mV, mi(t)50.0526, hi(t)50.600, ni(t)50.313
at t50, which are the rest-state solution of a single H
neuron. Hereafter, time, voltage, conductance, current, anD
are expressed in units of ms, mV, mS/cm2, mA/cm2, and
mA2/cm4, respectively. We have adopted parameters ofVa
530, Vc5250, andts5tn52. Adopted values ofgs , D,
M, andN will be described shortly.

B. Wavelet analysis

There are two types of WTs: one is the continuous wa
let transformation~CWT! and the other the discrete wavel
transformation~DWT!. In the former the parameters deno
ing the scale and translation are continuous variables w
in the latter they are discrete variables.

The CWT for a given regular functionf (t) is defined by

c~a,b!5E dtcab* ~ t ! f ~ t ![^̂ cab~ t !, f ~ t !&&, ~9!

with a family of waveletscab(t) generated by

cab~ t !5uau21/2cS t2b

a D , ~10!

wherec(t) is the mother wavelet, the asterisk denotes th
complex conjugate, anda andb express the scale change a
translation, respectively, and they physically stand for
inverse of the frequency and the time. Then the CWT tra
forms the time-dependent functionf (t) into the frequency-
and time-dependent functionc(a,b). The mother wavelet is
a smooth function with good localization in both frequen
and time spaces. A wavelet family given by Eq.~10! plays a
role of elementary function, representing the functionf (t) as
a superposition of waveletscab(t).

The inverseof the wavelet transformation may be give
by

f ~ t !5Cc
21E da

a2E dbc~a,b!cab~ t ! ~11!
2-3
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when the mother wavelet satisfies the following two con
tions: ~i! the admissibility condition given by

0,Cc,`, ~12!

with

Cc5E
2`

`

dvuĈ~v!u2/uvu, ~13!

whereĈ(v) is the Fourier transformation ofc(t), and ~ii !
the zero mean of the mother wavelet,

E
2`

`

dtc~ t !5Ĉ~0!50. ~14!

On the contrary, the DWT is defined fordiscretevalues of
a52 j andb52 j k ( j ,k: integers! as

cjk[c~2 j ,2j k!5 ^̂ c jk~ t !, f ~ t !&&, ~15!

with

c jk~ t !522 j /2c~22 j t2k!. ~16!

The orthonormal condition for the wavelet functions is giv
by

!c jk~ t !,c j 8k8~ t !@5d j j 8dkk8 , ~17!

leading to the inverse DWT,

f ~ t !5(
j

f j~ t !.(
j <J

f j~ t ![ f I~ t !, ~18!

with

f j~ t !5(
k

cjkc jk~ t !, ~19!

wheref I(t) stands for an approximate function generated
inverse DWT withJ, the adopted maximum value ofj.

In the multiresolution analysis of the DWT, we introduc
a scaling functionf(t), which satisfies the recurrent relatio
with 2K masking coefficients,hk , given by

f~ t !5A2 (
k50

2K21

hkf~2t2k!, ~20!

with the normalization condition forf(t) given by

E dtf~ t !51. ~21!

A family of wavelet functions is generated by

c~ t !5A2 (
k50

2K21

~21!kh2K212kf~2t2k!. ~22!

The scaling and wavelet functions satisfy the orthonorm
relations,
02190
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^̂ f~ t !,f~ t2m!&&5dm0 , ~23!

^̂ c~ t !,c~ t2m!&&5dm0 , ~24!

^̂ f~ t !,c~ t2m!&&50. ~25!

A set of masking coefficientshj is chosen so as to satisfy th
conditions shown above.

The simplest wavelet function forK51 is the Harr wave-
let for which we geth05h151/A2, and

cH~ t !51 for 0<t,1/2

521 for 1/2<t,1

50 otherwise. ~26!

In the more sophisticated wavelets like the Daubech
wavelet, an additional condition given by

E dttlc~ t !50 for l 50,1,2,3, . . . ,L21 ~27!

is imposed for the smoothness of the wavelet function. F
thermore, in the Coiflet wavelet, for example, a simil
smoothing condition is imposed also for the scaling funct
as

E dttlf~ t !50 for l 51,2,3, . . . ,L21. ~28!

Once WT coefficients are obtained, we can calculate v
ous quantities such as autocorrelation, cross correlations,
SNR, as will be discussed shortly. In principle, the expans
coefficientscjk in DWT may be calculated by using Eqs
~15! and ~16! for a given function f (t) and an adopted
mother waveletc(t). This integration is, however, inconve
nient, and in an actual fast wavelet transformation, the
pansion coefficients are obtained by a matrix multiplicati
with the use of the iterative formulas given by the maski
coefficients and expansion coefficients of the neighbor
levels of indices,j andk @54#.

One of the advantages of the WT over FT is that we c
choose a proper mother wavelet among many mother wa
lets, depending on the signal to be analyzed. Among m
candidates of mother wavelets, we have adopted the Coifl
with the resolution level ofJ55, forming a compromise
between the accuracy and the computational effort~the shape
of the adopted mother wavelet is realized in Fig. 8.3 of R
@53#!. The WT has been performed by using theMATLAB

wavelet tool box andFORTRAN programs with some modifi-
cations @80#. As will be shown shortly, the transformatio
error defined bye[i f I2 f i /i f i is of the order of 10212

wherei f i5A*dtu f (t)u2, and f (t) and f I(t) are original and
~approximate! inverse DWT signals, respectively@Eq. ~18!#.

III. CALCULATED RESULTS

A. Input pulses with MÄ1

First we discuss the case in which ensemble HH neur
receive a common single (M51) impulse. When input syn-
2-4
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aptic strength is small (gs,gth), no neurons fire in the
noise-free case, while if it is sufficiently large (gs>gth), all
neurons fire wheregth50.091 is the threshold value. For
while, we will discuss the subthreshold case ofgs50.06
,gth with N5500. TheM51 input pulse is applied att
5100 ms, as shown in Fig. 1~a!. Figure 1~b! shows the time
dependence of the postsynaptic current,I i(t)5I i

ps(t)1I i
n(t),

of the neuroni 51 with added noises ofD50.5. The states
of neurons when they receive input pulse are randomi
@37# because noises have been already applied beforeM
51 signal. Figure 1~c! shows the time dependence of th
membrane potentialV1(t) of the neuron 1, which fires with a
delay of about 6 ms. This delay time is much larger than
conventional value of 2–3 ms for suprathreshold inputs,
cause marginal, subthreshold inputs with small noises at
apses need a fairly long integration period before firin
@79#.

Firings in ensemble 500 neurons forD50.5 are depicted
by raster in Fig. 2~a!. We note that neurons fire not only b
input pulses plus noises but also spuriously by noises o
When the noise intensity is increased toD51.0, spurious
firings are much increased, as shown in Fig. 2~b!, where a
firing delay time is reduced to about 2–3 ms, almost
same as the conventional value@79#.

We will study how information is transmitted through e
semble HH neurons with the use of the DWT, assuming t
information is carried by firing times of spikes but not b
details of their shapes. Just as the first Fourier transfor
tion, DWT requires input data to be given at discrete poi
with equal spacing. Then we divide the time scale by
width of time bin of Tb in order to define the input an
output signals at discrete times as

Wi~ t !5(
l

(
m

Q~Tb/22ut2t imu!D~ t2 lTb!, ~29!

Wo~ t !5~1/N!(
i 51

N

(
l

(
n

Q~Tb/22ut2toinu!D~ t2 lTb!.

~30!

FIG. 1. The time dependence of~a! the M51 input pulse (Ui),
~b! the postsynaptic current (I 15I 1

ps1I 1
n), ~c! the membrane poten

tial of the neuronI 51 (V1), and ~d! input (Wi), and ~e! output
signals (Wo310) with the time bin ofTb55 ms for D50.5, gs

50.06, andN5500. The vertical scale is only forWi andWo (Wi

is shifted upwards by 1.0!.
02190
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In Eqs. ~29! and ~30! Wi(t) stands for the external inpu
signal ~without noises!, Wo(t) the output signal average
over the ensemble neurons,Q(t) the Heaviside function,
D(t)51 for t50 and 0 otherwise,t im themth firing time of
inputs, andtoin thenth firing time of outputs of the neuroni
@Eq. ~8!#. Our simulation has tentatively adopted the time b
of Tb55 ms, which is comparable to the characteristic tim
constant of neurons. A single simulation has been perform
for 320 (526Tb) ms. A M51 input pulse att5100 ms
leads toWi(t5100)51.0 in Eq.~29!. Wi(t) is shown in Fig.
1~d! where the function defined by Eq.~29! at the discrete
times of lTb are connected by lines. Figure 1~e! similarly
shows Wo(t) for the case ofD50.5. The magnitude of
Wo(t) is much smaller than that ofWi(t) because only a few
neurons fire among 500 neurons: note that the curve in
1~e! is multiplied by a factor of ten. Figure 1~e! shows that
firings by input signal plus noise yieldWo(t5100)50.016
and Wo(t5105)50.096, and noise-only firings yield sma
contributions to Wo(t). The peak position ofWo(t) is
slightly shifted compared to that ofWi(t) because of a delay
of neuron firings as mentioned above.

1. Wavelet transformation

Now we apply the DWT to input and output signals. B
substitutingf (t)5Wi(t) or Wo(t) in Eq. ~15!, we get their
WT coefficients given by

cl jk5E dtc jk* ~ t !Wl~ t ! ~l5 i ,o!, ~31!

FIG. 2. Rasters showing firings in ensemble neurons for~a! D
50.5 and~b! D51.0 with M51, gs50.06, andN5500.
2-5
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where c jk(t) is a family of wavelets generated from th
mother Coiflet wavelet@see Eq.~16!#. The uppermost frame
of Fig. 3~a! expresses the input signalWi(t). Note that the
lower and upper horizontal scales expressb andbTb ~in units
of ms!, respectively. Figure 3~b! shows the calculated WT
coefficients of Wi(t) which are plotted as a function o
b( j ,k)5(k20.5)2j for various j values after convention
The WT coefficients ofj 51 and 2 have large values ne
b520 (bTb5100 ms) whereWi(t) has a peak. Contribu
tions from j 51 and j 52 are predominant inWi(t). It is
noted that the WT coefficient forj 54 has a significant value
at b;56 far away fromb520. The decomposition of the
inverse WT signal:f (t). f I(t)5( j 51

5 f j (t) @Eq. ~18!# is plot-
ted in Fig. 3~a!. The transformation error ise[i f I2 f i /i f i
;2.12310212, and then the inverse WT functionf I(t)
shows good agreement with the original functionf (t). The
WT decomposition for output signalWo(t) for D50.5 are
shown in Fig. 4~a!, in which the transformation error ise
;2.03310212. The WT coefficients depicted in Fig. 4~b!
show the dominant contribution to arise fromj 51 in Wo(t).
Similar plots of the WT decomposition and the WT coef
cients of the output signalWo(t) for D51.0 are presented in
Figs. 5~a! and 5~b!, respectively. The denosing technique e
ployed in Figs. 4~c!, 4~d!, 5~c!, and 5~d! will be explained
later. An input pulse plus noise yield the output signal w
Wo(t5100)50.088 andWo(t5105)50.126, for which the
transformation error is again very small:e;1.96310212. As
the noise intensity is increased, fine structures in the
coefficients appear, in particular for smallj.

2. Autocorrelation and cross correlations

The autocorrelation functions for input (G i i ) and output
signals (Goo) are defined by

Gll5M 21E dtWl~ t !* Wl~ t !

5M 21(
j

(
k

cl jk* cl jk ~l5 i ,o!, ~32!

FIG. 3. ~a! The input signalf 5Wi ~uppermost frame! for M
51 with WT decomposition:f .( j 51

5 f j , and~b! its WT expansion
coefficientscjk . Curves off j for j >2 andf in ~a!, and those ofcjk

for j >2 in ~b! are successively shifted upward by 1.0. Upper ho
zontal scale expressesbTb in ms.
02190
-

T

where the orthonormal relations of the wavelets given
Eqs.~23!–~25! are employed. Similarly the cross correlatio
between input and output signals is defined by

G io~b!5M 21E dtWi~ t !* Wo~ t1bTb!

5M 21(
j

(
k

ci jk* co jk~b!, ~33!

where ci jk and co jk(b) are the expansion coefficients o
Wi(t) and Wo(t1bTb), respectively. We define the max
mum in the input-output correlation by

G5maxb@G io~b!#, ~34!

and that in the normalized cross correlation by

g5maxbF G io~b!

AG i iAGoo
G5

G

AG i iAGoo

. ~35!

-

FIG. 4. ~a! The original output signalf 5Wo ~uppermost frame!
for D50.5 andM51 with its WT decomposition:f .( j 51

5 f j , and
~b! its WT expansion coefficientscjk . ~c! The denoised output sig
nal ~uppermost frame! with WT decomposition, and~d! its WT
expansion coefficientscjk

dn denoised with the parameters ofj c53
anddb55. Curves off j for j >2 andf in ~a! and~c!, and those of
cjk for j >2 in ~b! and ~d! are successively shifted upward by 0.
Upper horizontal scale expressesbTb in ms.
2-6
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It is noted that for the suprathreshold inputs in the noise-f
case, we getGoo5G io51 and thenG5g51 (G i i 51).

Figure 6~a! shows theD dependence ofG, Goo , andg for
g50.06 andN5500. They are zero atD50 because of the
adopted subthreshold parameters. Upon increasingD from
zero,G andGoo increase gradually, butg increases rapidly as
clearly shown in the left panel where we plot the result
the narrow range of 0<D<0.2, marked by vertical, dashe
line in the right panel. Because of the factor of 1/AGoo in Eq.
~35!, the magnitude ofg is larger than that ofG. We note that
g is enhanced by weak noises and it is decreased at la
noises, which is a typical SR behavior.

3. Signal-to-noise ratio

We will evaluate the SNR by employing the denoisi
method@74–77#. The key point in the denoising is how t
choose which wavelet coefficients are correlated with
signal and which ones with noises. The simple denois
method is to neglect some DWT expansion coefficients w
reproducing the signal by the inverse wavelet transformat
We get the denoised signal by the inverse WT@Eq. ~18!#,

Wl
dn~ t !5(

j
(

k
cl jk

dn c jk~ t !, ~36!

FIG. 5. ~a! The original output signalf 5Wo ~uppermost frame!
for D51.0 andM51 with its WT decomposition:f .( j 51

5 f j , and
~b! its WT expansion coefficientscjk . ~c! The denoised output sig
nal ~uppermost frame! with WT decomposition, and~d! its WT
expansion coefficientscjk

dn denoised with the parameters ofj c53
anddb55. Same as in Fig. 4.
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with the denoised WT coefficientscjk
dn to be chosen properly

as will be discussed below. The simplest denoising meth
for example, is to assume that WT components fora,ac in
the (a,b) plane arise from noises to set the denoised W
coefficients as

cjk
dn5cjk for j > j c ~a>ac!

50 otherwise, ~37!

where j c (5 log2ac) is the criticalj value @74#.
In our simulation we adopt a more sophisticated meth

Assuming that the components forb,bL or b.bU at a
,ac in the ~a,b! plane are noises, we set the denoised W
coefficients as

cjk
dn5cjk for j > j c or kL<k<kU

50 otherwise, ~38!

where j c (5 log2ac) denotes the criticalj value, andkL
(5bL22 j ) andkU (5bU22 j ) are the lower and upper criti
cal k values, respectively, forj , j c . We will obtain the in-
verse, denoised signal by using Eq.~36! with the denoised
WT coefficients determined by Eq.~38!.

In the present case we can fortunately obtain the WT
efficients forideal case of noise-free and suprathreshold
puts. We then properly determine the denoising parame
of j c , bL , andbU . From the observation of the WT coeffi
cients for the ideal case, which is not shown here but is
dissimilar to those shown in Figs. 3~a! and 4~a!, we assume
that the upper and lower bounds may be chosen as

bL5to1 /Tb2dbL , bU5toM /Tb1dbU , ~39!

where to1 (toM) are the first (M th) firing times of output
signals in the ideal case of noise-free and suprathreshold
puts, anddbL andbU denote the marginal distances from th
b values expected to be responsible to the signal trans

FIG. 6. TheD dependence of~a! g ~circles!, Goo ~triangles!, and
G ~squares!, and ~b! SNR for M51, gs50.06, andN5500. Left
panels of~a! and ~b! show the enlarged plots of right panels of~a!
and~b!, respectively, in the narrow range of 0<D<0.2 marked by
vertical, dashed lines.
2-7



s

s

n

a

i-

er

e

e
0

hat
eak

m-

e

the
s.
nd

s
-

s

0

1.0

HIDEO HASEGAWA PHYSICAL REVIEW E66, 021902 ~2002!
sion. In order to reduce the number of parameters, we
dbL5dbU5db, although a choice of parameters withdbL
,dbU may be better when a transmission delay of neuron
taken into account.

From the above consideration, we may define the sig
(As) and noise components (An) by

As5E dtWo
dn~ t !* Wo

dn~ t !5(
j

(
k

uco jk
dn u2, ~40!

An5E dt@Wo~ t !* Wo~ t !2Wo
dn~ t !* Wo

dn~ t !#

5(
j

(
k

~ uco jku22uco jk
dn u2!. ~41!

The SNR,h, is defined by

h510 log10~As /An! ~dB!. ~42!

Figure 4~d! shows the denoised WT coefficientscjk
dn when

the WT coefficientscjk of the original output signal forD
50.5 shown in Fig. 1~b!, are denoised by using Eqs.~38! and
~39! with parameters ofj c53 anddb55. WT coefficients
for j ,3 and ub220u.5 (ubTb2100u.25 ms) are set
zero after the denoising condition@Eq. ~38!#. The denoised
signal of Wo

dn , which is given by Eq.~36! and which is
shown in Fig. 4~c!, is almost the same as the original sign
shown in Fig. 4~a!. The denoised WT coefficient forD
51.0 with the same denoising parameters ofj c53 anddb
55, is depicted in Fig. 5~d!. The denoised WT signal ofWo

dn

shown in Fig. 5~c! has less amount of ripples than the orig
nal signal shown in Fig. 5~a!.

In order to investigate the effect of denosing paramet
j c anddb, on denoised signals, we have calculated SNRh
defined by Eq.~42! by changing these parameters. Figur
7~a! and 7~b! show thedb dependence of SNR ofWo for
D50.5 andD51.0, respectively, calculated with variousj c
values. We note that an increase inj c and/or a decrease indb

FIG. 7. Thedb dependence of SNR of output signals for~a!
D50.5 and~b! D51.0 with j c52 ~squares!, 3 ~triangles!, and 4
~circles! for M51, gs50.06, andN5500 ~see text!.
02190
et

is

al

l

s,

s

reduce SNR because of increased noise contributions@Eq.
~41!#. We have decided to adoptj c53 anddb55 for our
simulations.

The D dependence of SNR calculated forg50.06 and
N5500 is plotted in Fig. 6~b!, where the left panel shows th
enlarged plot of the right panel in the narrow range of
<D<0.2 marked by the vertical, dashed line. We note t
SNR shows a typical SR behavior: a rapid rise to a clear p
and a slow decrease for largerD value.

So far, our simulation has been made for the fixed para
eters ofgs50.06 andN5500, which will be changed in the
followings. By adoptingN51, 10, 100, and 500, we hav
obtained theD dependence of the cross correlationg and
SNR plotted in Figs. 8~a! and 8~b!, respectively, where left
panels show the enlarged plots of the right panels in
narrow range of 0<D<0.2 marked by vertical, dashed line
Results forN51 and 10 are averaged values of hundred a
ten trials, respectively, while those forN5100 and 500 are
of single runs. The results ofN5500 show the typical SR
behavior as mentioned before@Figs. 6~a! and 6~b!#. On the
contrary, SR effect for a single (N51) neurons is marginally
realized in SNR but not ing. Large error bars for the result
of N51 imply that the reliability of information transmis
sion is very low in the subthreshold condition@21#. This is
clearly seen in Figs. 9~a! and 9~b! where g and SNR for

FIG. 8. ~a! The cross correlationg and~b! SNR as a function of
D for M51 andgs50.06 withN51, 10, 100, and 500. Left panel
of ~a! and~b! show the enlarged plots of right panels of~a! and~b!,
respectively, in the narrow range of 0<D<0.2 marked by vertical,
dashed lines. Results forN51 (N510) are averaged values of 10
~10! trials and their rms is shown by error bars. Results of~a! and
~b! for N510, 100, and 500 are successively shifted upward by
and 20, respectively.
2-8
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D51.0 withN51 are plotted against the trial number of 10
runs. The signal can be transmitted only when the sig
fortunately coincides with noises and the signal plus no
crosses the threshold level. Then only 13 among 100 tr
are succeeded in the transmission ofM51 inputs through a
neuron. We note in Figs. 8~a! and 8~b! that as the size of the
network is much increased, the peak values ofg and SNR
are much enhanced and the SR behavior becomes more
dent. Figures 8~a! and 8~b! demonstrate that the ensemble
neurons play anindispensablerole in information transmis-
sion of transient spike signals. This is consistent with
results of Collinset al. @33# and Peiet al. @36#, who have
pointed out the improvement of the information transmiss
by increasing the size of the network.

Next we change the value ofgs , the strength of input
synapses. Thegs dependence ofg and SNR forN5500
neurons is shown in Figs. 10~a! and 10~b!, respectively,
where values ofD50.0, 0.5, and 1.0 are employed. Note th
in the noise-free case (D50), we getg51 and SNR5` for
gs>gth but g50 and SNR52` for gs,gth , as shown by
dotted curves in Figs. 10~a! and 10~b!. It is shown that mod-
erate subthreshold noises considerably improve the trans
fidelity. For a comparison, thegs dependence ofg and SNR
for single (N51) neurons is shown in Figs. 11~a! and 11~b!,
respectively. As has been shown in Fig. 8~a!, SR forN51 is

FIG. 9. ~a! The cross correlationg and~b! SNR of 100 trials for
single (N51) neurons withD51.0, gs50.06, andM51.

FIG. 10. Thegs dependence of the cross correlationg and SNR
for N5500 andM51. Dotted, dashed, and solid curves denote
results ofD50.0, 0.5, and 1.0, respectively. The arrow expres
the thresholdgs value.
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less significant compared to that forN5500. We note that
the gs dependence ofg for N5500 in Fig. 10~a! is not
monotonic, while that forN51 in Fig. 11~a! is monotonic.
This is expected to be due to small fluctuations in calcula
results ofN5500, for which single runs may be insufficien
to get monotonic, regular results: the monotonic result oN
51 is the average of hundred runs. The reason why
result ofg is more irregular than that of SNR in Fig. 10
not clear at the moment. It should be noted in Figs. 10~a! and
10~b! that the presence of weak noises does not significa
degrade the transmission fidelity for suprathreshold case
ensemble neurons.

B. Input pulses with MÄ2 and 3

Now we discuss the cases ofM52 and 3. Input pulses are
applied att5100 and 125 ms for theM52 case. The ISI of
input signal is assume to beTi525 ms because spikes wit
this value of ISI are reported to be ubiquitous in cortic
brains@50#. Firings of 500 neurons for the noise intensity
D51.0 are shown by raster in Figs. 12~a!, which shows that
firings occur mainly att;103 and 128 ms with a delay o
about 3 ms. The output signalWo(t) averaged overN
5500 neurons is depicted by the solid curve in the upp
most frame of Fig. 13~a!, which has two main peaks. Th
WT decomposition and WT coefficients ofWo(t) are plotted
in Figs. 13~a! and 13~b!, respectively. When we compare th
results forM52 shown in Figs. 13~a! and 13~b! with those
for M51 shown in Figs. 5~a! and 5~b!, we note that compo-
nents for j 51 and 2 forM52 are much increased becau
of the presence of the second peak forM52 inputs while the
contributions fromj >3 are changed little. The denoising ha
been made by the procedure given by Eqs.~36!, ~38!, and
~39! with parameters ofj c53 anddb55. WT decomposi-
tion of a denoised signal and denoised WT coefficients
shown in Figs. 13~c! and 13~d!, respectively.

Similarly we apply theM53 pulse att5100, 125, and
150 ms, the input ISI being againTi525 ms. Raster in Fig.
12~b! shows firing of 500 neurons forD51.0. Firings mainly
occur att;103, 128, and 153 ms with a delay of about 3 m

e
s

FIG. 11. Thegs dependence of the cross correlationg and SNR
for N51 andM51. Dotted, dashed, and solid curves denote
results ofD50.0, 0.5, and 1.0, respectively, and error bars expr
rms values for 100 trials.
2-9
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The solid curve in the uppermost frame of Fig. 14~a! shows
the averaged output ofWo(t) for D51.0. The solid bars in
Fig. 14~b! show its WT coefficients and the solid curves
Fig. 14~a! express its WT decomposition. Again, compone
of j 51 and 2 are much increased because of the second
third peaks inWo(t). Figures 14~c! and 14~d! show WT de-
composition of a denoised signal and denoised WT coe
cients, respectively.

The calculatedD dependence of the cross correlationg
~SNR! for M51, 2, and 3 is plotted in Fig. 15~a! @Fig.
15~b!#. Both g and SNR show typical SR behavior irrespe
tive of the value ofM, although a slight difference exist
between theM dependence ofg and SNR: for largerM, the
former is larger but the latter is smaller at the moderate no
intensity ofD,1.0. When similar simulations are performe
for different ISI values ofTi515 and 35 ms, we obtain re
sults which are almost the same as that forTi525 ~not
shown!. This is because the output spikes for inputs w
M52 and 3 are superposition of an output spike for aM
51 input when input ISI is larger than the refractory peri
of neurons (;10 ms).

IV. CONCLUSION AND DISCUSSION

Our simulations based on the temporal-code model h
shown that a population of neurons plays a very import
role in the transmission of subthreshold transient spike
nals@Figs. 8~a! and 8~b!#. In particular, for single neurons th
transmission is quite unreliable and the appreciable SR e
is not realized. When the size of ensemble neurons is

FIG. 12. Raster showing firings in ensemble neurons for~a!
M52 and~b! M53 with D51.0, gs50.06, andN5500.
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creased, the transmission fidelity is much improved in
fairly wide range of thegs parameter for both the subthres
old and suprathreshold cases~Fig. 10!. We note in Figs. 8~a!
and 8~b! that g ~or SNR! for N5100 with a single run is
different from and larger than that forN51 with 100 runs.
This seems strange because if there is no couplings am
neurons as in our model, a simulation for an ensemble oN
neurons with a single trial is expected to be equivalent
simulations for a single neuron withN trials. This is, how-
ever, not true, and it will be understood as follows. We co
sider a quantity ofX(N,Nr) which is g ~or SNR! averaged
over Nr trials for an ensemble ofN neurons. We implicitly
expressX(N,Nr) as

X~N,Nr !5 ^̂ F~^wi
(m)&!&& ~43!

5
1

Nr
(
m51

Nr

FS 1

N (
i 51

N

wi
(m)D , ~44!

with

wi
(m)5wi

(m)~ t !5(
l

(
n

Q~Tb/22ut2toin
(m)u!D~ t2 lTb!,

~45!

FIG. 13. ~a! The original output signalf 5Wo ~uppermost
frame! for D51.0 andM52 with WT decomposition:f .( j 51

5 f j

and~b! its WT expansion coefficientscjk . ~c! The denoised outpu
signal ~uppermost frame! with WT decomposition, and~d! its WT
expansion coefficientscjk

dn denoised with the parameters ofj c53
anddb55. Curves off j for j >2 andf in ~a! and~c!, and those of
cjk for j >2 in ~b! and ~d! are successively shifted upward by 0.
Upper horizontal scale expressesbTb in ms.
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where ^̂ && and ^ & stand for averages over trials and an e
semble neurons, respectively, defined by Eq.~44!, toin

(m) is the
nth firing time of the neuroni in the mth trial, wi

(m)(t) is its
output signal of the neuroni with a time bin of Tb , and
F„y(t)… is a functional of a given function ofy(t) relevant to
a calculation ofg ~or SNR!. Figures 8~a! and 8~b! show that
the relationX(100,1).X(1,100), namely,

F~^wi
(1)&!. ^̂ F~w1

(m)!&&, ~46!

FIG. 14. ~a! The original output signalf 5Wo ~uppermost
frame! for D51.0 andM53 with WT decomposition:f .( j 51

5 f j ,
and~b! its WT expansion coefficientscjk . ~c! The denoised outpu
signal ~uppermost frame! with WT decomposition, and~d! its de-
noised WT expansion coefficientscjk

dn denoised with the parameter
of j c53 anddb55. Same as in Fig. 13.

FIG. 15. ~a! The cross correlationg and ~b! SNR as a function
of D for M51 ~circles!, M52 ~squares!, andM53 ~triangles!.
02190
-

holds for ourg ~or SNR!. Note that ifF(•) is linear, we get
X(100,1)5X(1,100) @Eq. ~44!#. This implies that the in-
equality given, Eq.~46!, is expected to arise from anonlin-
ear character ofF(•). This reminds us of the algebraic in
equality: f (^x&)>^ f (x)& valid for a convex functionf (x),
where the bracket̂•& stands for an average over a distrib
tion of a variablex. It should be again noted that there is n
couplings among our neurons in the adopted model. Then
enhancement of SNR with increasingN is only due to a
population of neurons. This is quite different from the res
of some studies@34,35,38,39# in which the transmission fi-
delity is enhanced not only by noises but also by introduc
couplings among neurons in an ensemble.

In our simulations reported in Sec. III, independent nois
are applied to ensemble neurons. If instead we try to ap
the same orcompletely correlatednoise to them, which is
equivalent to applying noises to a single neuron, an app
ciable SR effect cannot be realized as discussed above. T
SR for transient spikes requires independent noises to
applied to a large-scale ensemble of neurons. This is con
tent with the result of Liu, Hu, and Wang@39# who discussed
the effect of correlated noises on SR for stationary ana
inputs.

Although spike trains with small values ofM51 to 3
have been investigated in Sec. III, we can make an anal
of spikes with largerM or bursts, by using our method. I
order to demonstrate its feasibility, we have made simu
tions for transient spikes with largerM. The upper curve of
Fig. 16~a! expresses inputWi(t) with a M57 spike train
whose firing times aret im5100, 115, 130, 145, 160, 180, an
200 ms, and ISIs areTi515 and 20 ms. Firings of 100 neu
rons in an ensemble are depicted by raster in Fig. 16~b!,
where the parameters ofgs50.06, D51.0, andN5100 are
adopted. The lower curve in Fig. 16~a! shows its output
Wo(t) averaged over the ensemble. We apply WT toWo(t)
to get its WT coefficients and its WT decomposition, t
latter being shown in Fig. 16~c!. The j 51 and j 52 compo-
nents are dominant. After the denoising, we getg50.523
and SNR518.6 dB, which are comparable to those forD
51.0 with M51 –3 shown in Figs. 15~a! and 15~b!. In our
denoising method given by Eqs.~38! and ~39!, we extract
noises outside theb region relevant to a cluster of spikes, b
do not take into account the noises between pulses. Wh
number of pulsesM and/or input ISI (Ti) become larger, a
contribution from noises between pulses become consi
able, which requires to modify the denoising method such
to extract noises between pulses, for example, as given

cjk
dn5cjk , for j > j c or kLm<k<kUm ~m512M !

50 otherwise. ~47!

In Eq. ~47! kLm and kUm are m and j dependent lower and
upper limits given by

kLm522 j~ tom /Tb2db!, kUm522 j~ tom /Tb1db!,
~48!

where tom is the mth firing time for the noise free and su
prathreshold input anddb the margin ofb.
2-11
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To summarize, the response of ensemble HH neuron
transient spike-train signals has been discussed with the
of the WT for subthreshold and suprathreshold inputs. T
transmission for subthreshold transient inputs has b
shown to be much improved by weak noises in large-sc
ensemble neurons~SR effect!: a population of neurons play
an essential role in SR for transient inputs. On the contr
our simulation has shown that for suprathreshold trans
inputs, the transmission fidelity evaluated by the cro
correlation and SNR is not enhanced by noises, in ac
dance with the previous study on SR for an aperiodic sig
in ensemble FN neurons@33#. Quite recently, however
Stocks and Mannella have demonstrated SR for suprathr
old inputs in ensemble FN neurons@35#, applying an aperi-
odic Gaussian signal with independent Gaussian noise

FIG. 16. ~a! The input spike trainWi(t) ~upper curve! consisting
of M57 pulses, and its output signalWo(t) multiplied by a factor
of 5 ~lower curve! for gs50.06, D51.0, andN5100, Wi(t) being
shifted upward by 2.0.~b! Raster showing firings of 100 neuron
~c! The WT decomposition:f 5Wo(t).( j 51

5 f j , results forj 52, 3,
4, and 5 being successively shifted upward by 0.2.
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evaluate the mutual information. Suprathreshold SR~SSR!
relies on the distributed nature of an aperiodic Gaussian
nal and the mutual information adopted as a measure
information transmission. Actually, for a suprathreshold a
riodic Gaussian signal, the enhancement is realized in
mutual information butnot in SNR, as pointed out in Ref
@81#. Thus the difference between the absence of SSR in
study and in Ref.@33# and the presence of SSR in Ref.@35#
arises from the difference in an applied signal~a transient
spike signal and a slow varying aperiodic signal@33# versus
aperiodic Gaussian signal@35#! and in an evaluation metho
of information transmission~SNR and the cross correlatio
@33# versus the mutual information@35#!. In an earlier paper
of one of the authors~Stocks! @82#, multiple threshold levels
have been introduced to parallel arrays in order to get S
although in the later papers@35,81#, threshold levels are se
to the same value. Our preliminary calculation has sho
that when we include the distribution of synaptic condu
tancegs around the threshold level ofgth imitating the mul-
tithreshold systems@82#, a weak SSR may be realized i
cross-correlation and SNR. It would be possible that ma
mum SNR coincides with maximum mutual information b
cause our approach considers signal fidelity rather than
formation processing. Details will be reported in a separ
paper.

Our paper entirely relies on numerical simulations. I a
currently trying to work on the theoretical description of th
result reported in this paper. Conventional approaches ha
been employed for a study of SR such as the rate equa
and linear-response theories@22,23#, do not work in our case
Mato @46# adopted Gammaitoni’s approach@83# for an analy-
sis of his SR result with the continuous spike-train signals
seems, however, not to be translatable directly to our cas
transient spike-train signals even if our HH model is replac
by a simpler IF model or threshold-crossing model. Its a
lytical study is left as our future problem.

Note added in proof. Recently, a semianalytical, dynam
cal mean-field theory has been developed@84#, which may
elucidate the mechanism of an improvement of the transm
sion fidelity by increasing the size of neuron ensembles.
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