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Stochastic resonance of ensemble neurons for transient spike trains: Wavelet analysis
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By using the wavelet transformatid/T), | have analyzed the response of an ensembh¢ £ 1, 10, 100,
and 500 Hodgkin-Huxley neurons teransient Mpulse spike trainsNl =1 to 3) with independent Gaussian
noises. The cross correlation between the input and output signals is expressed in terms of the WT expansion
coefficients. The signal-to-noise rati8NR) is evaluated by using théenoisingmethod within the WT, by
which the noise contribution is extracted from the output signals. Although the response of a Birglg (
neuron to subthreshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the
cross correlation and SNR is shown to be much improved by increasing the valua pbpulation of neurons
plays an indispensable role in the stochastic resonéBiRefor transient spike inputs. It is also shown that in
a large-scale ensemble, the transmission fidelity for suprathreshold transient spikes is not significantly de-
graded by a weak noise which is responsible to SR for subthreshold inputs.
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[. INTRODUCTION neocortical neuronmm vitro are precise and reliable, those
vivo are quite unreliabl¢21] due to its noisy environment,
During the last half century, extensive experimental andvhich makes the reliability of neurons firings worse. In re-
theoretical studies have been performed on the functions afent years, however, many studies have been performed for
brain. However, it remains controversial how neurons comithe stochastic resonan¢8R) [22,23 in which information
municate information by action potentials or spikds-6].  transmission of signals is enhanced by background noises.
One issue is whether information is encoded in the averag@his paradoxical SR phenomenon was first discovered in the
firing rate of neurongrate code or in the precise firing times context of climate dynamics, and it is now reported in many
(temporal codg Since Adrian 7] first noted the relationship nonlinear systems such as electric circuits, ring lasers, semi-
between neural firing rate and stimulus intensity, the rateeonductor devices, and neurons.
code model has been supported in many experiments of mo- For single neurons, SR has been studied by using various
tor and sensory neurons. In the last few years, however, exheoretical models such as the integrate-and¢fiF¢ model
perimental evidences have been accumulated, indicating [24-26, the FitzHough-Nagume¢FN) model[27-29, and
use of the temporal code in neural systems; sonar processitige Hodgkin-Huxley(HH) model [30]. In these studies, a
of bats[8], sound localization of owlE9], electrosensation in weak periodic(sinusoidal signal is applied to the neuron,
electric fish[10], visual processing of cafd1,12, monkeys and it has been reported that the peak height of the
[13], and human$14]. interspike-intervallSl) distribution[24—27 or the signal-to-
Although many debates on the nature of the neural codeaoise ratio(SNR) of output signal$28—3Q shows the maxi-
have been focused on the rate versus temporal codes, therenisim when the noise intensity is changed.
another important issue to consider: information is encoded SR in coupled or ensemble neurons has been also inves-
in the activity of single(or very few neurons or that of a tigated by using the IF mod¢B1,32, FN model[33-35,
large number of neurorn@opulationor ensemble codeThe  and HH model36—39. The transmission fidelity is exam-
population rate-code model assumes that information igned by calculating various quantities: the peak-to-width ra-
coded in the relative firing rates of ensemble neurons, antlo of output signal$31,36,37, the cross correlation between
has been adopted in most of the theoretical analyses. On theput and output signal81,33,39, SNR[31,34,39, and the
contrary, in the population temporal-code model, it is as-mutual informatior{35]. One or some of these quantities has
sumed that relative timings between spikes in ensemble nelbeen shown to take a maximum as functions of the noise
rons may be used as an encoding mechanism for perceptionatensity and the coupling strength. Collins, Chow, and Im-
processing15-17. A number of experimental data support- hoff [33] have pointed out that SR of ensemble neurons is
ing this code have been reported in recent y¢a2s18—20. improved as the size of an ensemble is increased. Some
For example, data have demonstrated that temporally coophysiological experiments support SR in real, biological sys-
dinated spikes can systematically signal sensory object feaems of crayfisH40,41], cricket[42] and rat[43,44).
ture, even in the absence of changes in firing rate of the SR studies mentioned above are motivated from the fact
spikes[18]. that peripheral sensory neurons play the role of transducers,
The strong criticism against the temporal code is thateceiving analog stimuli and emitting spikes. In central neu-
spikes are vulnerable to noise while the rate code is robustl systems, however, cortical neurons play the role of data
against noise. It is well known that although firings of single processors, receiving and transmitting spike trains. The pos-
sibility of SR in the spike transmission has been reported
[45-47]. The response to periodic coherent spike-train inputs
*Email address: hasegawa@u-gakugei.ac.jp has been shown to be enhanced by an addition of spike-train
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noises characterized by Poissietb,47] or gamma distribu-  that the WT is a powerful tool for spike sorting in which
tion [46]. coherent signals of a single target neuron are extracted from
It should be stressed that these theoretical studies on SRixture of response signa[63—65. Quite recently, Hase-
in neural systems have been performed mostly for stationargawa[67] has made an analysis of transient spike-train sig-
analog(or spike-train signals although they are periodic or nals of a HH neuron with the use of WT, calculating the
aperiodic[33,48. There have been few theoretical studies onenergy distribution and Shanon entropy.
SR for nonstationary signals. Fakit9] has discussed SR for It is interesting to analyze the response of ensemble neu-
nonstationary analog inputs with finite duration by calculat-"oNS totransientspike inputs in a noisy environment by us-
ing the cross correlation. By applying a single impulse, PeiiNd the WT. There are several sources of noiggscells in
Wilkinson, and Mos$36] have demonstrated that the spike- SENSOTY neurons are exposed to noises arising from the outer
timing precision is improved by noises in an ensemble ofVorld, (i) ion channels of the membrane of neurons are
1000 HH neurons. One of the reasons why SR study foknOWn to be stochastigs8], (iii) the synaptic transmission
stationary signals is dominant, is mainly due to the fact tha¥i€lds noises originating from random fluctuations of the
the stationary signals can be easily analyzed by the FourigyNaptic vesicle release rafé9], and (iv) synaptic inputs
transformation(FT) with which, for example, the SNR is include leaked currents from neighboring neurpr@}. Most
evaluated from FT spectra of output signals. The FT require8f the existing studies on SR adopt the Gaussian noises, tak-
that a signal to be examined is stationary, not giving the timdnd into account the item&)—(iii). Simulating the noise of
evolution of the frequency pattern. Actual biological signalsthe item(iv), Refs.[45—47 include spike-train noises char-

are, however, not necessarily stationary. It has been reportéfterized by a Poisson or gamma dist.ribution. In this study
that spike signals in cortical neurons are generally not stal’e take into account Gaussian noises; SR for spike-train in-

tionary, rather they are transient signals or burs] puts with added spike-train noises will be discussed in a

whereas periodic spikes are found in systems such as audieParate papdi1].

tory system of owl[51] and the electrosensory system of e assume an ensemble of HH neurons, which receives
electric fish[52]. transient spike trains consisting bf pulses with added, in-

The limitation of the FT analysis can be partly resolveddependent Gaussian noises. The HH neuron model was origi-
by using the short-time Fourier transformatit®TFT). As- nally proposed to account for the properties of squid giant
suming that the signal is quasistationary in the narrow timé@*0on[72], and it has been generalized with modifications of
period, the FT is applied with time-evolving narrow win- 10N conductances. The HH-type models have been widely
dows. Then STFT yields the time evolution of the frequencyadomed for.a study of neuronal activity. Neuron models such
spectrum. While the STFT compromise between time and@S the Morris-Lecaf73], FN, and IF models were proposed
frequency information can be useful, the drawback is thafS the simplified, reduced versions of the HH model. Al-
once we choose a particular size of the time window, thafhough these simplified models are more amenable than the
window is the same for all frequencies. Many signals requird?H model, the variables in the models do not have direct

a more flexible approach in which we can vary the window€mpirical basis in real neurons. In this sense, the HH model
size to determine more accurately either time or frequency.lS known to be the most realistic among theoretical neuron

The drawback of the STFT is overcome in the waveletmodels. The signal transmission is assessed by the cross cor-
transformation(WT) [53,54 with a variable-sized window- '€lation between input and output signals and SNR, which
ing. In contrast to the FT, the WT offers a two-dimensional'€ €xpressed in terms of WT expansion coefficients. In cal-
expansion for a time-dependent signal with the scale angulating the SNR, we adopt the denoising technique within
translation parameters which are interpreted physically as th&€ WT method 74-77, by which the noise contribution is
inverse of frequency and time, respectively. The WT allowseXtracted from output signals. The WT denoising method is
the use of long time intervals where we want more precis€*Pected be better than other methods such as Wiener filter-
low-frequency information, and shorter regions where welnd; Which is best applied to stationary signals with noises
want high-frequency information. As a basis of the WT, wel 78l: . i
employ themother wavelewhich is localized in both fre- Our paper is organized as follows. In Sec. IIA, an
quency and time domains. The WT expansion is carried oi@doptéd model for an ensemble Nfunit HH neurons is
in terms of a family of wavelets which is made by dilation described, and in Sec. 1B the WT is briefly discussed. We
and translation of the mother wavelet. The time evolution ofPrésent the calculated results fist=1 pulse train in Sec.
frequency pattern can be followed with an optimal time-!lIl A, and the resulits for spike trains with =2 and 3 are
frequency resolution. dlscus_sed in Sec. Il B. Section |V is devoted to conclusion

The WT appears to be an ideal tool for analyzing signalnd discussion.
of a nonstationary nature. In recent years the WT has been
applied to an analysis of biological sign@&b], such as elec- Il. CALCULATION METHODS
toencephalographiEEG) waves[56—62, and spikeg63—
67]. EEG is a reflection of the activity of ensembles of neu-
rons producing oscillations. By using the WT, we can obtain We assume a network consisting Nfunit HH neurons
the time-dependent decomposition of EEG signal8 (6.3—  which receive the same spike trains but independent Gauss-
3.5H2, 6 (3.5-7.5 Hz, a (7.5-12.5 Hz, B8 (12.5-30.0 Hz  ian white noises through excitatory synapses. Spikes emitted
and y (30—70 Hz component$56—67. It has been shown by the ensemble neurons are collected by a summing neuron.

A. Ensemble neuron model
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A similar model was previously adopted by several authorsn a similar form as an input spik&q. (5)], wheret,;, is the
studying SR for analog signdl83,36,37. An input signal in  nth firing time whenV;,(t) crossesV,=0 mV from below.

this paper is a transient spike train consistingvbfmpulses We should remark that our model given by E¢b—(7)
(M=1 to 3. Dynamics of the membrane potentil(t) of  does not include couplings among ensemble neurons. This is
the HH neuroni is described by the nonlinear differential in contrast with some works on ensemble neurons

equations given by [34,35,38,39 where introduced couplings among neurons
_ , play an important role in SR besides noises, related discus-
CdVi(H)/dt=—1""() + 1P +1](t) (for 1<i<N), sion being given in Sec. IV.
(1) In order to solve stochastic differential equations given by

_ Egs. (1)—(7), we have adopted the forth-order Runge-Kutta
whereC= _1,uF/ch12 is the capacitance of the membrane. Thealgorithm, which has been widely employed in SR studies,
first term1;°"(t) of Eq. (1) denotes the ion current given by although there are some criticisms that the algorithm is not

, useful for noisy integration. Our simulations have been per-
1o7(t) = gnamhi (Vi = Vi) + gk (Vi— Vi) +90(Vi— VL), formed by the integration time step of 0.01 ms with double
2 precision: some results have been examined by using smaller

h h . | ¢ I f time steps and also the exponential algorithm. The initial
where the maximum values of conductivities of Na and K., nditions for the variables are given by (t)=

channels and leakage —aregy,=120 mS/C, gk g5 my, m(t)=0.0526, hi(t)=0.600, ny(t)=0.313
=36 mS/cr, and g, =0.3 mS/cn, respectively; the re- i _ ¢ which are the rest-state solution of a single HH
spective reversal potentials ar&/,=50 MV, V= na,r0n. Hereafter, time, voltage, conductance, currentband
—77 mV, andV, =—54.5 mV. Dynamics of the galing e expressed in units of ms, mV, mSfmuA/cm?, and

variables of Na and K channelsy, h;, andn;, are de-  aA2/cnft respectively. We have adopted parameters/ of
scribed by ordinary differential equations, whose details havé_f 30. V L _5% andqylz =2 Adoptgd va[?ues of DQ
1 Cc 1 S n . S 1

been given elsewhel&2,79.
The second termP(t) in Eq. (1) denotes the postsynaptic
current given by

M, andN will be described shortly.

B. Wavelet analysis

M
_ There are two types of WTs: one is the continuous wave-
lips(t)_mzl 9s(Va=Vs)a(t=tim), ©® et transformatiofCWT) and the other the discrete wavelet
transformationDWT). In the former the parameters denot-
with the alpha functiorx(t), ing the scale and translation are continuous variables while
in the latter they are discrete variables.
a(t)=(t/r)e "s0(1), 4 The CWT for a given regular functiof(t) is defined by

where the Heaviside function is defined By(t)=1 for x N

=0 and 0 forx<0, t;, is themth firing time of the input, C(a’b):f dtyzu() F(O)={an(t), F(D), 9
andgs, Vg, and 7 stand for the conductance, reversal po-
tential, and time constant, respectively, of the synapse. Th
postsynaptic current given by E) is induced by an input
spike train with the magnitud¥, given by

With a family of waveletsy,,(t) generated by

t—b
M Yan()=lal "2y —= |, (10
Ui()=Va 2 A(t=tim), 5
where ¢(t) is the mother waveletthe asterisk denotes the
whereA(t)=1 for t=0 and O otherwise. complex conjugate, analandb express the scale change and
The third terml {(t) in Eq. (1) denotes the Gaussian noise translation, respectively, and they physically stand for the
given by inverse of the frequency and the time. Then the CWT trans-
forms the time-dependent functidift) into the frequency-
(§(1))=0, (6)  and time-dependent functiar(a,b). The mother wavelet is
a smooth function with good localization in both frequency
(§j(D & (")) =2D 5 8(t—t’), (7)  and time spaces. A wavelet family given by Efj0) plays a

) role of elementary function, representing the functi¢t) as
where the bracketX) denotes the average afdthe inten- 3 superposition of wavelei,(t).

sity of white noises. The inverseof the wavelet transformation may be given
The output spike of the neurdnin an ensemble is given by
by
_, [ da
Uoi(1)=Va A(t—toin) (8 f(t)=C, 2 dbc(a,b) ap(t) (11
n
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when the mother wavelet satisfies the following two condi-

tions: (i) the admissibility condition given by
0<C,<, (12
with

C,)= fj;dw|\if(w)|2/|w|, (13

where ¥ () is the Fourier transformation af(t), and ii)
the zero mean of the mother wavelet,

f dty(t)=¥(0)=0. (14)

On the contrary, the DWT is defined fdiscretevalues of

a=2 andb=2/k (j,k: integers as
Ci=c(2),21K) = (i (1), F (1)), (19
with

YD) =2"12y(271t—k). (16)

by
<Y, 110 (1) > = 551 e 17

leading to the inverse DWT,

f(t)=; fj(t)zgJ fi()=F,(1), (18)
with
fi(t)=§k: Cikik(t), (19

PHYSICAL REVIEW E66, 021902 (2002

(1), d(t—m) )= 6o, (23
(), p(t=m) )= 6o, (24
(1), g(t—m))=0. (29

A set of masking coefficients; is chosen so as to satisfy the
conditions shown above.

The simplest wavelet function fé¢ =1 is the Harr wave-
let for which we geth,=h,=1/,/2, and

Yp(t)=1 for 0O=t<1/2
=—1 for 1/2<t<1
=0 otherwise. (26)

In the more sophisticated wavelets like the Daubechies
wavelet, an additional condition given by

Jdtt'zp(t):O for 1=0,1,23...L-1 (27

is imposed for the smoothness of the wavelet function. Fur-
thermore, in the Coiflet wavelet, for example, a similar

The orthonormal condition for the wavelet functions is givenSmeothing condition is imposed also for the scaling function
as

fdtt'qs(t):o for 1=123...L-1. (29

Once WT coefficients are obtained, we can calculate vari-
ous quantities such as autocorrelation, cross correlations, and
SNR, as will be discussed shortly. In principle, the expansion
coefficientscy, in DWT may be calculated by using Egs.
(15 and (16) for a given functionf(t) and an adopted
mother wavelet/(t). This integration is, however, inconve-
nient, and in an actual fast wavelet transformation, the ex-
pansion coefficients are obtained by a matrix multiplication
with the use of the iterative formulas given by the masking

wheref,(t) stands for an approximate function generated bycoefficients and expansion coefficients of the neighboring

inverse DWT withJ, the adopted maximum value pf

In the multiresolution analysis of the DWT, we introduce

levels of indicesj andk [54].
One of the advantages of the WT over FT is that we can

a scaling functionp(t), which satisfies the recurrent relation choose a proper mother wavelet among many mother wave-

with 2K masking coefficients,, given by

2K—-1

HO=\2 2, hep(2t=K), (20
with the normalization condition fog(t) given by

f dte(t)=1. (21

A family of wavelet functions is generated by

2K-1

w<t>=ﬁk§0 (—1)*hgk 1k p(2t—k). (22

The scaling and wavelet functions satisfy the orthonormal

relations,

lets, depending on the signal to be analyzed. Among many
candidates of mother wavelets, we have adopted the Coiflet 4
with the resolution level ofJ=5, forming a compromise
between the accuracy and the computational eftbg shape

of the adopted mother wavelet is realized in Fig. 8.3 of Ref.
[53]). The WT has been performed by using theTLAB
wavelet tool box an@ORTRAN programs with some modifi-
cations[80]. As will be shown shortly, the transformation
error defined bye=|f,—f|/|f| is of the order of 102
where||f||= V[ dt[f(t)[?, andf(t) andf,(t) are original and
(approximate inverse DWT signals, respectivelfq. (18)].

IIl. CALCULATED RESULTS

A. Input pulses with M=1

First we discuss the case in which ensemble HH neurons
receive a common singleM=1) impulse. When input syn-
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FIG. 1. The time dependence @) theM =1 input pulse U;), | U e et
(b) the postsynaptic current {=15°+17), (c) the membrane poten- 4001 3 J . *(by D.:TO |
tial of the neuronl=1 (V,), and(d) input (W,), and (e) output y I . ? : : N
signals W,x10) with the time bin ofT,=5 ms forD=0.5, g 3 300- K . §
=0.06, andN=500. The vertical scale is only fa; andW, (W; S ;_ ot ]
is shifted upwards by 1)0 § I v .
| | . g 200 o IR :
aptic strength is smallgs<<g;,), no neurons fire in the z S 4 -,
noise-free case, while if it is sufficiently largg{=0gyy), all 100k ° It . W g
neurons fire wherg,,=0.091 is the threshold value. For a L. N {' e ’ 4
while, we will discuss the subthreshold case qaf=0.06 - g T S
100 200 300

<y, With N=500. TheM =1 input pulse is applied at
=100 ms, as shown in Fig(d). Figure Xb) shows the time
dependence of the postsynaptic currérit) =17t) +17(t), FIG. 2. Rasters showing firings in ensemble neurongdpD
of the neurori =1 with added noises dd=0.5. The states =0.5 and(b) D=1.0 withM=1, g;=0.06, andN = 500.
of neurons when they receive input pulse are randomized
[37] b_ecause.nmses have been al_ready applied befdre a |, Egs. (29) and (30) W;(t) stands for the external input
=1 signal. Figure (c) shows the time dependence of the gignal (without noises W,(t) the output signal averaged
membrane potentlall(t)_of the neuron 1, which fires with a gyer the ensemble neuron®,(t) the Heaviside function,
delay of_ about 6 ms. This delay time is much Iarggr than theA(t): 1 for t=0 and O otherwise;,, the mth firing time of
conventlongl value of 2-3 ms_for supr_athreshold inputs, bernputs, and,;, the nth firing time of outputs of the neurain
cause marginal, subthreshold inputs with small noises at syfeq ()], Our simulation has tentatively adopted the time bin
apses need a fairly long integration period before firingsy T,=5 ms, which is comparable to the characteristic time
[79]-, . . i constant of neurons. A single simulation has been performed
Firings in ensemble 500 neurons fr=0.5 are depicted 5, 320 (=25T,) ms. AM=1 input pulse at=100 ms
by raster in Fig. £a). We note that neurons fire not only by 054 toW: (t=100)=1.0 in Eq.(29). Wi(t) is shown in Fig.
input pulses plus noises but also spuriously by noises only () \yhere the function defined by EqRY) at the discrete
When the noise intensity is increased 0o=1.0, SpUrious  times of I T, are connected by lines. Figurdel similarly
firings are much increased, as shown in Figh)2where a  gnopsw(t) for the case ofD=0.5. The magnitude of
firing delay time is r_educed to about 2—3 ms, almost the\No(t) is much smaller than that &, (t) because only a few
same as the conventional valli9). , neurons fire among 500 neurons: note that the curve in Fig.
We will study how mformatlon is transmitted through €N- 1(e) is multiplied by a factor of ten. Figure(@ shows that
§emble HH neurons with th? use of the DW,T' assuming thafirings by input signal plus noise yield#/,(t=100)=0.016
information is carried by firing times of spikes but not by and W, (t=105)=0.096, and noise-only firings yield small
details of their shapes. Just as the first Fourier transmrm%’ontrit;)utions toW,(t). The peak position ofW,(t) is
o . [0}

tion, DWT requires input data to be given at discrete points,,; . A
with equal spacing. Then we divide the time scale by chSllghtly shifted compared to that d;(t) because of a delay

. : . ; ) ) of neuron firings as mentioned above.
width of time bin of T, in order to define the input and g
output signals at discrete times as

t (ms)

1. Wavelet transformation

R ey . Now we apply the DWT to input and output signals. By
Wi©)=2 2 OTy/2-[t=tmDAM=1To) (29 ciingf (1) =Wi(t) or Wy(t) in Eq. (15), we get their
WT coefficients given by

N
Wo(t)=(IN) 2 3 X O(Ty/2=[t=toin) A(t=ITp).
: n (30) C%Jk:J'dtwrk(t)W)\(t) (N=i,0), (31)
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0204060 b 204050 2072060 2 4%
FIG. 3. (a) The input signalf =W, (uppermost framefor M bT}, (ms) bTy, (ms)
=1 with WT decompositionf:Elefj , and(b) its WT expansion 0 . 1?0,290 ,390 0.5— 1?0.20,0 .30,0
coefficientsc, . Curves off; for j=2 andf in (a), and those ot 0.4-© denoised - (d) =5 1
for j=2 in (b) are successively shifted upward by 1.0. Upper hori- g i fl w 0.4 T
zontal scale expresséd, in ms. E P g 0 A 4 1
_ _ 8 A 5 | .2 U,
where ¢ (t) is a family of wavelets generated from the go‘ £, a"a’ A j=| 1
mother Coiflet wavelefsee Eq(16)]. The uppermost frame 8 ‘/\FT 8 0.2 ._
of Fig. 3(a) expresses the input signdl;(t). Note that the 3 0.2 I g 0 1' , J=
lower and upper horizontal scales express1db T, (in units E A b lg ™ T _—
of ms), respectively. Figure (8 shows the calculated WT A f) i !
coefficients of W;(t) which are plotted as a function of 0 D=0.5 |
b(j,k)=(k—0.5)2 for various| values after convention. o2 d ]0 20 2060
The WT coefficients off=1 and 2 have large values near b

b=20 (bT,=100 ms) wheraV,(t) has a peak. Contribu-

tions fromj=1 andj=2 are predominant iW;(t). It is FIG. 4. (a) The original output signal=W, (uppermost frame

— - i e 55
noted that the WT coefficient fgr=4 has a signif_iqant value ]E(t)); :?S VSTS ;(npimsiolnvggre]flfiig;(:ﬁz)m fﬁ:'gzzgisié:g&éuil?g_
.at b~56 far gway fromb=20. 'ghe decomp05|t|qn of the nal (uppermost fram)ewnth WT decomposition, andd) its WT
inverse WT signalf (t)=f,(t) =27_,;(t) [Eq.(18)]is plot-  gypansion coefficientsy’ denoised with the parameters jpf=3
ted in Fig. 3a). The transformation error is=|f,—f[|/[f|  andsb=5. curves off; for j=2 andf in (a) and(c), and those of
~2.12<10 ", and then the inverse WT functiof(t) ¢k for =2 in (b) and (d) are successively shifted upward by 0.1.
shows good agreement with the original functitt). The  Upper horizontal scale expresde$, in ms.

WT decomposition for output signdV,(t) for D=0.5 are

shown in Fig. 4), in which the transformation error is  where the orthonormal relations of the wavelets given by
~2.03x10 2 The WT coefficients depicted in Fig.(®  Egs.(23)—(25) are employed. Similarly the cross correlation
show the dominant contribution to arise frgrs 1 in W,(t). between input and output signals is defined by

Similar plots of the WT decomposition and the WT coeffi-

cients of the output sign&WV,(t) for D=1.0 are presented in

Figs. 5a) and Jb), respectively. The denosing technique em- Fio(B)=M 71J- dtWi(t)* Wy(t+ 8Ty)

ployed in Figs. 4c), 4(d), 5(c), and %d) will be explained

later. An input pulse plus noise yield the output signal with B

W, (t=100)=0.088 andW,(t=105)=0.126, for which the =M1 Ek ChikCoik(B), (33
transformation error is again very smadk-1.96x 10" 12 As ]
the noise intensity is increased, fine structures in the WT

coefficients appear, in particular for small where c;j;, and ¢, (B) are the expansion coefficients of

W;(t) and W,(t+ BTy), respectively. We define the maxi-
2. Autocorrelation and cross correlations mum in the input-output correlation by

The autocorrelation functions for input’() and output

signals () are defined by F=max[Tio(B)], (34)

I =M ,1f W, (W, (1) and that in the normalized cross correlation by

_ FiO(B) _ r
M7E F o (-t (@2 f N N

021902-6



STOCHASTIC RESONANCE OF ENSEMBLE NEURGHN. . . PHYSICAL REVIEW E 66, 021902 (2002

bT,, (ms) bTj, (ms)
0 100 200 300 0 100 200 300 o
. T T T T 4 T
(a) orlgmal L(b) i=5 Too ~
0.6 n £ 04 ! ‘
=] |2 !
o d = i o
= f, '§ 0 . j=4 (AO0%000,
g 04—~ 5 |
g b 15 0o i
2 02— 2 s} j=
= U = L :
E A f2 a 0.1- |I j=1 |
A f L .
0 1 AL |
D=1.0 0. i 1 7
020,40 & - - 20 2060 T |
D D
bTy, (ms) bTy, (ms) FIG. 6. TheD dependence aB) v (circles, I',,, (triangles, and
0 190 200 300 0.5— 1?0 ,2(')0 ,309 I' (squarey and(b) SNR for M=1, gs=0.06, andN=500. Left
0.6 _(c) den01sed L (d) =5 1 panels of(a) and (b) show the enlarged plots of right panels(af
a ’\ f - 0.4 Y . and (b), respectively, in the narrow range oD <0.2 marked by
2 T s T =41 vertical, dashed lines.
R 0 4 f5 2 O") . |
& 0.4 g
) f4 % 0.2—L = with the denoised WT coefficientﬁ’kn to be chosen properly
§ 02 fy <; - =2 T as will be discussed below. The simplest denoising method,
= \A/ £ | & 0—7- ' for example, is to assume that WT componentséera, in
= P [ ||. =1 the (a,b) plane arise from noises to set the denoised WT
0—4A/—1 | coefficients as
D—l 0 0. ]0
0 20b 3060 20 2060 C]dkn:Cjk for j=j. (a=a.)
FIG. 5. (a) The original output signal=W, (uppermost frame =0  otherwise, (37)

for D=1.0 andM =1 with its WT decompositionf:Elefj , and _ . o
(b) its WT expansion coefficients;, . (c) The denoised output sig- Wherej; (=log,a.) is the criticalj value[74].

nal (uppermost fram)ewuth WT decomposition, andd) its WT In our simulation we adopt a more sophisticated method.
expansion coefﬂments denoised with the parameters pf=3 Assuming that the components for<b, or b>b, at a
andsb=5. Same as |n F|g 4, <a. in the (a,b plane are noises, we set the denoised WT

. . . . coefficients as
It is noted that for the suprathreshold inputs in the noise-free

case, we gel',,=I';,=1 and then'=y=1 (I';;=1). dn_.  f - Kk <K<Kk
Figure &a) shows theD dependence df, I',,, andvy for Cik=Ck for J=Je OF K= v
g=0.06 andN=500. They are zero @ =0 because of the =0 otherwise, (39)

adopted subthreshold parameters. Upon increaBirfigom

zero,I" andl', increase gradually, but increases rapidly as  where j. (=log,a;) denotes the criticaj value, andk,
clearly shown in the left panel where we plot the result for(=b, 27)) andk, (=by2}) are the lower and upper criti-
the narrow range of € D=<0.2, marked by vertical, dashed cal k values, respectively, for<j.. We will obtain the in-
line in the right panel. Because of the factor of T}, in Eq.  verse, denoised signal by using E§6) with the denoised
(35), the magnitude o¥ is larger than that of . We note that WT coefficients determined by E¢B9).

v is enhanced by weak noises and it is decreased at larger In the present case we can fortunately obtain the WT co-

noises, which is a typical SR behavior. efficients forideal case of noise-free and suprathreshold in-
_ _ _ puts. We then properly determine the denoising parameters
3. Signal-to-noise ratio of j., b_, andby . From the observation of the WT coeffi-

We will evaluate the SNR by employing the denoising cients for the ideal case, which is not shown here but is not
method[74—-77. The key point in the denoising is how to dissimilar to those shown in Figs(a and 4a), we assume
choose which wavelet coefficients are correlated with théhat the upper and lower bounds may be chosen as
signal and which ones with noises. The simple denoising
method is to neglect some DWT expansion coefficients when b =t51/Tp=0b, by=tom/T,+ by, (39
reproducing the signal by the inverse wavelet transformation.

We get the denoised signal by the inverse YER. (18)], wherety; (tov) are the first Mth) firing times of output
signals in the ideal case of noise-free and suprathreshold in-

de )= t 36 puts, andsb, andb denote the marginal distances from the
()= E 2 C)"kwjk( ) (36) b values expected to be responsible to the signal transmis-
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D=0.5 and(b) D=1.0 with j.=2 (square} 3 (triangles, and 4
(circles for M=1, g,=0.06, andN=500 (see text

sion. In order to reduce the number of parameters, we set

ob = éby= b, although a choice of parameters widl,

< 6by may be better when a transmission delay of neurons is

taken into account.

From the above consideration, we may define the signal oteunur

(As) and noise component#\{) by

J dtwan(t)*wan(t) = >, E [cSl2 (40

j
= f At Wo(1)* Wo(t) — WA * WI"(1)]
_2 2 (|C01k|2 |C01k| . (41)

The SNR, 7, is defined by
7=10 logo(As/A,) (dB). (42

Figure 4d) shows the denoised WT coefficieruﬁ{‘ when
the WT coefficientsc, of the original output signal foD
=0.5 shown in Fig. (b), are denoised by using Eq88) and
(39 with parameters of .=3 and sb=5. WT coefficients
for j<3 and |b—20>5 (|bT,—100>25 ms) are set
zero after the denoising conditidiEq. (38)]. The denoised
signal of\Ng“, which is given by EQq.(36) and which is

PHYSICAL REVIEW E66, 021902 (2002
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FIG. 8. (a) The cross correlatioy and(b) SNR as a function of
D for M=1 andg,=0.06 withN=1, 10, 100, and 500. Left panels
of (a) and(b) show the enlarged plots of right panels(af and(b),
respectively, in the narrow range oD <0.2 marked by vertical,
dashed lines. Results fokl=1 (N=10) are averaged values of 100
(10) trials and their rms is shown by error bars. Resultgapfand
(b) for N=10, 100, and 500 are successively shifted upward by 1.0
and 20, respectively.

reduce SNR because of increased noise contribufifiqs
(41)]. We have decided to adopt=3 and sb=5 for our
simulations.

The D dependence of SNR calculated fgre=0.06 and
N=500 is plotted in Fig. @), where the left panel shows the
enlarged plot of the right panel in the narrow range of 0
<D=0.2 marked by the vertical, dashed line. We note that
SNR shows a typical SR behavior: a rapid rise to a clear peak
and a slow decrease for largervalue.

So far, our simulation has been made for the fixed param-
eters ofgs=0.06 andN =500, which will be changed in the
followings. By adoptingN=1, 10, 100, and 500, we have
obtained theD dependence of the cross correlatipnand

shown in Fig. 4c), is almost the same as the original signal SNR plotted in Figs. & and 8b), respectively, where left

shown in Fig. 4a). The denoised WT coefficient fob
=1.0 with the same denoising parameters of 3 and éb
=5, is depicted in Fig. @). The denoised WT signal M/g”

panels show the enlarged plots of the right panels in the
narrow range of & D=0.2 marked by vertical, dashed lines.
Results folN=1 and 10 are averaged values of hundred and

shown in Fig. %c) has less amount of ripples than the origi- ten trials, respectively, while those fot=100 and 500 are

nal signal shown in Fig. &).

of single runs. The results df =500 show the typical SR

In order to investigate the effect of denosing parametershehavior as mentioned befofEigs. §a) and gb)]. On the
jc and &b, on denoised signals, we have calculated SR contrary, SR effect for a singléN(=1) neurons is marginally
defined by Eq.(42) by changing these parameters. Figuresrealized in SNR but not iry. Large error bars for the results

7(a) and 7b) show thesb dependence of SNR diV, for
D=0.5 andD=1.0, respectively, calculated with varioys
values. We note that an increasq jrand/or a decrease ifb

of N=1 imply that the reliability of information transmis-
sion is very low in the subthreshold conditip®1]. This is
clearly seen in Figs. (@ and 9b) where y and SNR for
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FIG. 9. (a) The cross correlatiory and(b) SNR of 100 trials for AQ——— 005 BT
single N=1) neurons withD=1.0, gs=0.06, andM =1. s

) ) ) FIG. 11. Thegs dependence of the cross correlatipand SNR
D=1.0 withN=1 are plotted against the trial number of 100 for N=1 andM=1. Dotted, dashed, and solid curves denote the

runs. The signal can be transmitted only when the signalesults ofb=0.0, 0.5, and 1.0, respectively, and error bars express
fortunately coincides with noises and the signal plus noisems values for 100 trials.

crosses the threshold level. Then only 13 among 100 trials

are succeeded in the transmissionbf=1 inputs through a  |ess significant compared to that fdi=500. We note that
neuron. We note in Figs.(8 and 8b) that as the size of the {pe g dependence ofy for N=500 in Fig. 1@a) is not
network is much increased, the peak valuesyaind SNR  monotonic, while that foN=1 in Fig. 11a) is monotonic.
are much enhanced and the SR behavior becomes more e¥injs js expected to be due to small fluctuations in calculated
dent. Figures &) and 8b) demonstrate that the ensemble of regyts ofN =500, for which single runs may be insufficient
neurons play amdispensableole in information transmis- 14 get monotonic, regular results: the monotonic resullof
sion of transient spike signals. This is consistent with the_ 1 is the average of hundred runs. The reason why the
results of Collinset al. [33] and Peiet al. [36], who have  yegit of 5 is more irregular than that of SNR in Fig. 10 is
pointed out the improvement of the information transmission, ot clear at the moment. It should be noted in Figgaland

by increasing the size of the network. 10(b) that the presence of weak noises does not significantly

Next we change the value @, the strength of input gegrade the transmission fidelity for suprathreshold cases in
synapses. Thgs dependence ofy and SNR forN=500  onsemble neurons.

neurons is shown in Figs. (& and 1Qb), respectively,
where values oD =0.0, 0.5, and 1.0 are employed. Note that )
in the noise-free casé(=0), we gety=1 and SNR= for B. Input pulses with M=2 and 3

gs=0, but y=0 and SNR= — for gs<gy,, as shown by Now we discuss the casesNf=2 and 3. Input pulses are
dotted curves in Figs. 18 and 1@b). It is shown that mod-  applied att=100 and 125 ms for th®1 =2 case. The ISI of
erate subthreshold noises considerably improve the transitigfput signal is assume to Be=25 ms because spikes with
fidelity. For a comparison, thgs dependence of and SNR  this value of ISI are reported to be ubiquitous in cortical
for single (N=1) neurons is shown in Figs. (& and 11b),  brains[50]. Firings of 500 neurons for the noise intensity of
respectively. As has been shown in Figa)3 SR forN=1is  D=1.0 are shown by raster in Figs.(&2 which shows that
firings occur mainly at~103 and 128 ms with a delay of
about 3 ms. The output signal,(t) averaged ovem
=500 neurons is depicted by the solid curve in the upper-
most frame of Fig. 1&), which has two main peaks. The
WT decomposition and WT coefficients @i,(t) are plotted

in Figs. 13a) and 13b), respectively. When we compare the
results forM =2 shown in Figs. 1@&) and 13b) with those
for M=1 shown in Figs. &) and §b), we note that compo-
nents forj=1 and 2 forM =2 are much increased because
of the presence of the second peakNb+ 2 inputs while the
contributions fromj =3 are changed little. The denoising has
been made by the procedure given by E@S), (38), and
(39 with parameters of =3 and sb=5. WT decomposi-
tion of a denoised signal and denoised WT coefficients are
shown in Figs. 1&) and 13d), respectively.

FIG. 10. Theg, dependence of the cross correlatipmnd SNR Similarly we apply theM =3 pulse att=100, 125, and
for N=500 andM = 1. Dotted, dashed, and solid curves denote thel50 ms, the input ISI being again =25 ms. Raster in Fig.
results ofD=0.0, 0.5, and 1.0, respectively. The arrow expressesL2(b) shows firing of 500 neurons f@ = 1.0. Firings mainly
the thresholdy value. occur att~103, 128, and 153 ms with a delay of about 3 ms.
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T

0.5

SNR (dB)
— N W A
OOIOO

021902-9



HIDEO HASEGAWA PHYSICAL REVIEW E66, 021902 (2002

50 e o 0 190°500) 300 100°558 300
. £y} . . 2 .
- e 3 s @MZ. N 0“0(1;)- T
| * T - ‘ | (@ original | + =5 A1
ﬁ 400 . . :‘ d‘. .D. 1'.0. gOG A" f 0.4 T |
= _:%-{ = 18 ¢t =4
= 300+ S T 3 iy m— N 1k S
= .3 o =R .=3| ]
: P £ LA B 180 )
200+ . i . ‘ - 8 f, =R ]
Z 00_ - ; 3 : : éo'z"‘/\/"f“ 20l ||| B
S s . e > | _
100k A & % o ”‘\A’V‘““‘Nn ||.l I
(] f' i * . 0 f] L] |I
* ol ..: : ’ N |D=.1'0| 0 || Ll
= T 00300 20,40 60 e 20,40 60
t (ms)
50 bT}, (ms) bT}, (ms)
T A 0__100 200 300 0 100 200" 300
- . U o 2 — 1 v 1 T 1 . 1 T T
B s sl *(b) M=3- | (c) 4, denoised | () =5 1
400 - . T iy _D=10 509 M £ 7] 04— '
e L i o or. < e £ F s f g
Q0 . '{ % 7] f. L L J
< 300- v 1. . g0 g——L 1 50F =
A | $..3 5% ] g L A__f |3 j=3
g ¥k g , 0.2 |
E 200_ "; 3 'A:‘ ’ N EOZQ"\/\/‘"‘L“ EOl. II j=2 ]
(5] L 1 e 'I. L -
2 Pl s I ly— 2
100_. c: " ::. .‘ - f': T 0 fl lll '
- o {":‘ '?. e b < NN |D=.l‘0| -0 I 1 L. ]
- PR SR R O 20, 40 60 . 20, 40 60
100 200 300 b b

t (ms) FIG. 13. (8 The original output signalf=W, (uppermost

frame) for D=1.0 andM =2 with WT decompositionsz?zlfj
and(b) its WT expansion coefficients;, . (c) The denoised output
signal (uppermost framewith WT decomposition, andd) its WT
expansion coefficients}’kn denoised with the parameters pf=3
The solid curve in the uppermost frame of Fig(d4shows  andsb=>5. Curves off; for j=2 andf in (a) and(c), and those of
the averaged output &#/,(t) for D=1.0. The solid bars in ¢, for j=2 in (b) and(d) are successively shifted upward by 0.1.
Fig. 14b) show its WT coefficients and the solid curves in Upper horizontal scale expressg§, in ms.
Fig. 14@) express its WT decomposition. Again, components
of j=1 and 2 are much increased because of the second amrteased, the transmission fidelity is much improved in a
third peaks inW,(t). Figures 14c) and 14d) show WT de-  fairly wide range of theg, parameter for both the subthresh-
composition of a denoised signal and denoised WT coeffiold and suprathreshold cas@ig. 10. We note in Figs. &)
cients, respectively. and 8b) that v (or SNR for N=100 with a single run is
The calculatedd dependence of the cross correlatipn  different from and larger than that fo¢=1 with 100 runs.
(SNR) for M=1, 2, and 3 is plotted in Fig. 18 [Fig. = This seems strange because if there is no couplings among
15(b)]. Both ¥ and SNR show typical SR behavior irrespec- neurons as in our model, a simulation for an ensembll of
tive of the value ofM, although a slight difference exists neurons with a single trial is expected to be equivalent to
between thevl dependence oy and SNR: for largeM, the  simulations for a single neuron witN trials. This is, how-
former is larger but the latter is smaller at the moderate noisever, not true, and it will be understood as follows. We con-
intensity ofD<<1.0. When similar simulations are performed sider a quantity ofX(N,N,) which is y (or SNR averaged
for different I1SI values ofl;=15 and 35 ms, we obtain re- over N, trials for an ensemble dfl neurons. We implicitly
sults which are almost the same as that T9=25 (not  expressX(N,N,) as
shown. This is because the output spikes for inputs with
M=2 and 3 are superposition of an output spike foMa X(N,Nr)=<(F(<Wi(“)>)>> (43
=1 input when input ISl is larger than the refractory period
of neurons (-10 ms).

FIG. 12. Raster showing firings in ensemble neurons (&r
M =2 and(b) M =3 with D=1.0, gs=0.06, andN=500.

N N
1 d 1
=— > F(—E wiw’), (44)
IV. CONCLUSION AND DISCUSSION Nr n=1 N =1

Our simulations based on the temporal-code model have ith
shown that a population of neurons plays a very importanw
role in the transmission of subthreshold transient spike sig-
nals[Figs. §a) and 8b)]. In particular, for single neurons the W = W) (1) = O(To/2— lt—tWNA(t—IT
transmission is quite unreliable and the appreciable SR effect I §|: zn: (Ty/2=[t=tehah A o).
is not realized. When the size of ensemble neurons is in- (45)
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noised WT expansion coefficient%n denoised with the parameters
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holds for oury (or SNR. Note that ifF(-) is linear, we get
X(100,1)=X(1,100) [Eq. (44)]. This implies that the in-
equality given, Eq(46), is expected to arise from ronlin-

ear character of~(-). This reminds us of the algebraic in-
equality: f((x))=(f(x)) valid for a convex functionf(x),
where the bracket-) stands for an average over a distribu-
tion of a variablex. It should be again noted that there is no
couplings among our neurons in the adopted model. Then the
enhancement of SNR with increasimg is only due to a
population of neurons. This is quite different from the result
of some studie$34,35,38,39 in which the transmission fi-
delity is enhanced not only by noises but also by introduced
couplings among neurons in an ensemble.

In our simulations reported in Sec. lll, independent noises
are applied to ensemble neurons. If instead we try to apply
the same oicompletely correlatedhoise to them, which is
equivalent to applying noises to a single neuron, an appre-
ciable SR effect cannot be realized as discussed above. Then
SR for transient spikes requires independent noises to be
applied to a large-scale ensemble of neurons. This is consis-
tent with the result of Liu, Hu, and Warj&9] who discussed
the effect of correlated noises on SR for stationary analog
inputs.

Although spike trains with small values dfl=1 to 3
have been investigated in Sec. Ill, we can make an analysis
of spikes with largeM or bursts, by using our method. In
order to demonstrate its feasibility, we have made simula-
tions for transient spikes with largé. The upper curve of
Fig. 16 expresses inputV;(t) with a M=7 spike train
whose firing times arg,,= 100, 115, 130, 145, 160, 180, and
200 ms, and ISIs argé; =15 and 20 ms. Firings of 100 neu-
rons in an ensemble are depicted by raster in Figh)16

where(()) and() stand for averages over trials and an en-where the parameters gf=0.06, D=1.0, andN=100 are

semble neurons, respectively, defined by @), t{*) is the
nth firing time of the neurom in the wth trial, Wi(“)(t) is its
output signal of the neuron with a time bin of T,, and
F(y(t)) is a functional of a given function of(t) relevant to
a calculation ofy (or SNR. Figures 8a) and 8b) show that
the relationX(100,1)>X(1,100), namely,

(46)

FWD)>(F(wi)),

FIG. 15. (a) The cross correlatiory and(b) SNR as a function
of D for M=1 (circleg, M=2 (squares andM =3 (triangles.

adopted. The lower curve in Fig. (@ shows its output
W, (t) averaged over the ensemble. We apply WTAg(t)

to get its WT coefficients and its WT decomposition, the
latter being shown in Fig. 16). Thej=1 andj=2 compo-
nents are dominant. After the denoising, we get0.523

and SNR=18.6 dB, which are comparable to those for
=1.0 with M=1-3 shown in Figs. 1®) and 13b). In our
denoising method given by Eq&38) and (39), we extract
noises outside thie region relevant to a cluster of spikes, but
do not take into account the noises between pulses. When a
number of pulsed/ and/or input ISI T;) become larger, a
contribution from noises between pulses become consider-
able, which requires to modify the denoising method such as
to extract noises between pulses, for example, as given by

cli=cy, for or (m=1-M)

(47)

In Eq. (47) k_, andky, arem andj dependent lower and
upper limits given by

= Kimskskym

=0 otherwise.

kLm:2_j(tom/Tb_5b): kUm:2_j(tom/Tb+5b)a

(48)

wheret,, is the mth firing time for the noise free and su-
prathreshold input andb the margin ofb.
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FIG. 16. (a) The input spike traitW,(t) (upper curveconsisting
of M=7 pulses, and its output sign@l,(t) multiplied by a factor
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4, and 5 being successively shifted upward by 0.2.
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evaluate the mutual information. Suprathreshold (&SR
relies on the distributed nature of an aperiodic Gaussian sig-
nal and the mutual information adopted as a measure for
information transmission. Actually, for a suprathreshold ape-
riodic Gaussian signal, the enhancement is realized in the
mutual information buiot in SNR, as pointed out in Ref.
[81]. Thus the difference between the absence of SSR in our
study and in Ref[33] and the presence of SSR in RE35]
arises from the difference in an applied sigfialtransient
spike signal and a slow varying aperiodic sigfa8] versus
aperiodic Gaussian signgd5]) and in an evaluation method

of information transmissiofiSNR and the cross correlation
[33] versus the mutual informatidi85]). In an earlier paper

of one of the authorgStocks [82], multiple threshold levels
have been introduced to parallel arrays in order to get SSR,
although in the later papef85,81, threshold levels are set

to the same value. Our preliminary calculation has shown
that when we include the distribution of synaptic conduc-
tancegg around the threshold level @f;, imitating the mul-
tithreshold system$82], a weak SSR may be realized in
cross-correlation and SNR. It would be possible that maxi-
mum SNR coincides with maximum mutual information be-
cause our approach considers signal fidelity rather than in-
formation processing. Details will be reported in a separate
paper.

Our paper entirely relies on numerical simulations. | am
currently trying to work on the theoretical description of the
result reported in this paper. Conventional approaches having
been employed for a study of SR such as the rate equation
and linear-response theorigZ2,23, do not work in our case.
Mato[46] adopted Gammaitoni's approadg] for an analy-

To summarize, the response of ensemble HH neurons s of his SR result with the continuous spike-train signals. It
transient spike-train signals has been discussed with the uS§€MS, however, not to be translatable directly to our case of
of the WT for subthreshold and suprathreshold inputs. Thdransient spike-train signals even if our HH model is replaced
transmission for subthreshold transient inputs has beefY @ Simpler IF model or threshold-crossing model. Its ana-

shown to be much improved by weak noises in large-scald/tical study is left as our future problem.

ensemble neuron$R effec): a population of neurons plays

Note added in proofRecently, a semianalytical, dynami-

an essential role in SR for transient inputs. On the contrarys@ Mean-field theory has been develof8d], which may
our simulation has shown that for suprathreshold transierfelucidate the mechanism of an improvement of the transmis-
inputs, the transmission fidelity evaluated by the crossSion fidelity by increasing the size of neuron ensembles.
correlation and SNR is not enhanced by noises, in accor-

dance with the previous study on SR for an aperiodic signal ACKNOWLEDGMENT

in ensemble FN neuron$33]. Quite recently, however,

Stocks and Mannella have demonstrated SR for suprathresh- This work was partly supported by a Grant-in-Aid for

old inputs in ensemble FN neurof35], applying an aperi-
odic Gaussian signal with independent Gaussian noises
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Oulture, Sports, Science and Technology.

[1] F. Rieke, D. Warland, R. Steveninck, and W. BialBkploring
the Neural CoddMIT Press, Cambridge, 1996

[2] R. C. deCharms, Proc. Natl. Acad. Sci. U.S.95, 15166
(1998.

[3] J. J. Eggermont, Neurosci. Biobehav R2%, 355(1998.

[4] W. M. Ursey and R. C. Reid, Annu. Rev. Physi6ll, 435
(1999.

[5] R. C. deCharms and A. Zador, Annu. Rev. Neuroggj.613
(2000.

[6] A. Pouget, P. Dayan, and R. Zemel, Nat. Neurod¢il25
(2000.

[7] E. D. Adrian, J. Physiol(London 61, 49 (1926.

[8] N. Suga, W. E. O'Neill, K. Kujirai, and T. Manabe, J. Neuro-
physiol. 49, 1573(1983.

[9] M. Konishi, Harvey Lect86, 47 (1992.

[10] C. E. Carr, W. Heiligenberg, and G. J. Rose, J. Neurdci.
107 (1986.

[11] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M.

021902-12



STOCHASTIC RESONANCE OF ENSEMBLE NEURGHN. . .

Munk, and H. J. Reitboeck, Biol. Cyberf0, 121 (1988.

[12] C. M. Gray and W. Singer, Proc. Natl. Acad. Sci. U.S85,
1698(1989.

[13] E. T. Rolls and M. J. Tovee, Proc. R. Soc. London, Se25R,
9 (19949.

[14] S. Thorpe, D. Fize, and C. Marlot, Natufeondon 381, 520
(1996.

[15] J. J. Hopfield, NaturéLondon 376, 33 (1995.

[16] D. Horn and S. Levanda, Neural Complif), 1705(1998.

[17] R. van Rullen and S. J. Thorpe, Neural Compl®, 1255
(2001.

[18] R. C. deCharmes and M. M. Merzenich, Natdrendon 381,
610(1996.

PHYSICAL REVIEW E 66, 021902 (2002

[45] F. Chapeau-Blondeau, X. Godivier, and N. Chambet, Phys.
Rev. E 53, 1273 (1996; X. Godivier and F. Chapeau-
Blondeau, Europhys. Let85, 473(1996.

[46] G. Mato, Phys. Rev. 58, 876(1998; 59, 3339(1999.

[47] H. Hasegawa, e-print cond-mat/0202252.

[48] J. J. Collins, C. C. Chow, and T. T. Imhoff, Phys. Rev5&
R3321(1995; 54, 5575(1996.

[49] R. Fakir, Phys. Rev. 57, 6996(1998; 58, 5175(1998.

[50] R. D. Traub, J. G. R. Jefferys, and M. A. WhittingtoRast
Oscillations in Cortical Circuits (MIT Press, Cambridge,
1999.

[51] W. E. Sullivan and M. Konishiki, J. Neuros@93 268(1998.

[52] G. Rose and W. Heilingenberg, Natufeondorn 318 178
(1985.

[19] R. D. Traub, M. A. Whittington, and J. G. R. Jefferys, Neural [53] I. Daubechies,Ten Lectures on Wavelet€BMS-NSF Re-

Comput.9, 1251(1997.

[20] N. Hatsopoulas, C. L. Ojakangas, L. Paninski, and J. P. Dono-

hue, Proc. Natl. Acad. Sci. U.S.85, 15706(1998.
[21] Z. F. Mainen and T. J. Sejnowsky, Scier2#8 1503(1995.

[22] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Rev.

Mod. Phys.70, 223(1998.

gional Conference on Series on Applied Mathematigsc.

Ind. Appl. Math, Philadelphia, 1992Vol. 61.

[54] For reviews on the WT and its application see: N. M.
Astaf’eva, Usp. Fiz. Naukl66, 1145 (1996 [Phys. Usp.39,
1085 (1996]; I. M. Dremin, O. V. Ivanov, and V. A. Nech-
itailo, e-print hep-ph/0101182.

[23] V. S. Anishchenko, A. B. Neiman, F. Moss, and L. [55] V. J. Samar, A. Bopardikar, R. Rao, and K. Swartz, Brain

Schimansky-Geier, Usp. Fiz. Naul69, 7 (1999 [Sov. Phys.

Usp.42, 7 (1999].

[24] A. R. Bulsara, T. C. Elston, C. R. Doering, S. B. Lowen, and

K. Lindenberg, Phys. Rev. B3, 3958(1996.
[25] H. E. Plesser and S. Tanaka, Phys. LetR25 228(1994).

[26] T. Shimokawa, K. Pakdaman, and S. Sato, Phys. Rey9,E

3427(1999.
[27] A. Longtin, J. Stat. Physz0, 309(1993.

[28] K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, and F.

Moss, Phys. Rev. Let72, 2125(1994).

[29] A. Longtin and D. R. Chialvo, Phys. Rev. Let81, 4012
(19949.

[30] S. G. Lee and S. Kim, Phys. Rev.a®, 826 (1999.

Lang. 66, 7 (1999.

[56] S. Blanco, C. E. D'Attellis, S. I. Isaacson, O. A. Rosso, and R.
O. Sirne, Phys. Rev. B4, 6661(1996.

[57] S. Blanco, A. Figliola, R. QuianQuiroga, O. A. Rosso, and E.
Serrano, Phys. Rev. &7, 932(1998.

[58] J. Ratz, L. Dickerson, and B. Turetsky, Brain Lar&f, 61
(1999.

[59] L. J. Trejo, and M. J. Shensa, Brain Lar@, 89 (1999.

[60] T. Demiralp, A. Ademoglu, M. Schmann, C. Baar-Eroglu,

and E. Baar, Brain Lang.66, 108 (1999.

[61] T. Demiralp, J. Yordanova, V. Kolev, A. Ademoglu, M. Devrin,
and V. J. Samar, Brain Lan@6, 29 (1999.

[62] O. A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M.
Schumann, E. Baar, J. Neurosci. Method05, 65 (2001).

[31] T. Shimokawa, A. Rogel, K. Pakdaman, and S. Sato, Phys[63] E. Hulata, R. Segev, Y. Shapira, M. Benveniste, and E. Ben-

Rev. E59, 3461(1999.

[32] B. Lindner and L. Schimansky-Geier, Phys. Rev. L&,
2934 (2001).

[33] J. J. Collins, C. C. Chow, and T. T. Imhoff, Natufeondon
376, 236(1995.

[34] T. Kanamaru, T. Horita, and Y. Okabe, Phys. Re%4:31908
(2000.

[35] N. G. Stocks and R. Mannella, Phys. Rev6& 30902(2001).

[36] X. Pei, L. Wilkens, and F. Moss, Phys. Rev. LetfZ, 4679
(1996.

[37] S. Tanabe, S. Sato, and K. Pakdaman, Phys. Ré0, Z235
(1999.

[38] Y. Wang, D. T. W. Chik, and Z. D. Wang, Phys. Rev6E 740
(2000.

[39] F. Liu, B. Hu, and W. Wang, Phys. Rev. @3, 31907(2000.

[40] J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, Nature

(London 365, 337(1993.

[41] X. Pei, L. A. Wilkens, and F. Moss, J. Neurophysidé, 3002
(1996.

[42] J. E. Levins and J. P. Miller, Natufeondon 380, 165(1996.

[43] B. J. Gluckman, T. I. Netoff, E. J. Neel, W. L. Ditto, M. L.

Spano, and S. J. Schiff, Phys. Rev. L&, 4098(1996.

[44] D. Nozaki, D. J. Mar, P. Grigg, and J. J. Collins, Phys. Rev.

Lett. 82, 2402(1999.

Jacob, Phys. Rev. Let85, 4637(2000.

[64] J. C. Letelier and P. P. Weber, J. Neurosci. Methb@% 93
(2000.

[65] G. Zouridakis and D. C. Tam, Comput. Biol. Metho@g, 9
(1997.

[66] D. Stratimirovig S. Milosevig S. Blesig and M. Ljubiavljevig
Physica A291, 13 (2002.

[67] H. Hasegawa, e-print cond-mat/0109444.

[68] A. Destexhe, Z. F. Mainen, and T. J. SejnowskiTime Hand-
book of Brain Theory and Neural Networksdited by M. A.
Arbib (MIT Press, Cambridge, 1998p. 956.

[69] R. G. Smith, inThe Handbook of Brain Theory and Neural
Networks edited by M. A. Arbib (MIT Press, Cambridge,
1998, p. 816.

[70] M. N. Shadlen and W. T. Newsome, Curr. Opin. Neurobiol.

569 (1994.

[71] H. Hasegawdunpublishedl

[72] A. L. Hodgkin and A. F. Huxley, J. Physiol.17, 500 (1952.

[73] C. Morris and H. Lecar, Biophys. 35, 193(1981).

[74] E. A. Bartnik, K. J. Blinowska, and P. J. Durks, Biol. Cybern.
67, 175(1992.

[75] O. Bertrand, J. Bohorquez, and J. Pemier, IEEE Trans.
Biomed. Eng41, 77 (1994).

[76] D. L. Donoho, I. M. Johnstone, and B. W. Silverman, |IEEE

021902-13



HIDEO HASEGAWA PHYSICAL REVIEW E66, 021902 (2002

Trans. Inf. Theon/l, 613(1995. [80] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
[77] R. Q. Quiroga, Physica 45 278(2000. nery, Numerical Recipes in Fortrar2nd. ed (Cambridge Uni-
[78] S. Haykin, inThe Handbook of Brain Theory and Neural Net- versity Press, New York, 1992p. 584.

works edited by M. A. Arbib(MIT Press, Cambridge, 1998 [81] N. G. Stocks, Phys. Rev. &3, 41114(2001.

p. 82. [82] N. G. Stocks, Phys. Rev. Lei4, 2310(2000.

[79] H. Hasegawa, Phys. Rev. E1, 718 (2000; 62, 1456E) [83] L. Gammaitoni, Phys. Rev. B2, 4691(1995.

(2000; Bull. Tokyo Gakugei Univ. Ser. 453, 31 (2001. [84] H. Hasegawa, e-print cond-mat/0206135.

021902-14



